优化农业:农作物生产中的化学引诱综述

Adil Rahim Margay, Arif Hassan
{"title":"优化农业:农作物生产中的化学引诱综述","authors":"Adil Rahim Margay, Arif Hassan","doi":"10.9734/ijpss/2024/v36i74719","DOIUrl":null,"url":null,"abstract":"Agricultural productivity faces increasing challenges due to climate change, soil degradation, and the need for sustainable practices. Chemical priming, a technique involving the pre-treatment of seeds or plants with specific compounds, has emerged as a promising approach to enhance crop resilience, productivity, and stress tolerance. This review synthesizes current literature on the application of chemical priming in crop production, focusing on its mechanisms, effects on plant physiology, and its potential to optimize agricultural practices. Chemical priming operates through diverse mechanisms, including the induction of stress-responsive genes, enhancement of antioxidant activity, and modulation of hormone signaling pathways. These mechanisms result in improved germination rates, accelerated seedling growth, increased nutrient uptake, and enhanced tolerance to various abiotic and biotic stresses. Moreover, chemical priming has been shown to promote crop yield and quality under adverse environmental conditions, making it a valuable tool for sustainable agriculture. The effectiveness of chemical priming depends on various factors, such as the type of priming agent, concentration, timing of application, and the specific crop species. Furthermore, interactions with other agricultural practices, such as irrigation regimes and fertilization strategies, can influence its outcomes. Therefore, optimizing chemical priming protocols requires a comprehensive understanding of crop-specific responses and environmental factors. Despite its potential benefits, the widespread adoption of chemical priming in agriculture faces challenges related to cost-effectiveness, regulatory approval, and potential ecological impacts. Addressing these challenges requires further research to refine priming protocols, assess long-term effects on soil health and ecosystem functioning, and develop sustainable approaches for large-scale implementation.","PeriodicalId":507605,"journal":{"name":"International Journal of Plant & Soil Science","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Agriculture: A Review of Chemical Priming in Crop Production\",\"authors\":\"Adil Rahim Margay, Arif Hassan\",\"doi\":\"10.9734/ijpss/2024/v36i74719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Agricultural productivity faces increasing challenges due to climate change, soil degradation, and the need for sustainable practices. Chemical priming, a technique involving the pre-treatment of seeds or plants with specific compounds, has emerged as a promising approach to enhance crop resilience, productivity, and stress tolerance. This review synthesizes current literature on the application of chemical priming in crop production, focusing on its mechanisms, effects on plant physiology, and its potential to optimize agricultural practices. Chemical priming operates through diverse mechanisms, including the induction of stress-responsive genes, enhancement of antioxidant activity, and modulation of hormone signaling pathways. These mechanisms result in improved germination rates, accelerated seedling growth, increased nutrient uptake, and enhanced tolerance to various abiotic and biotic stresses. Moreover, chemical priming has been shown to promote crop yield and quality under adverse environmental conditions, making it a valuable tool for sustainable agriculture. The effectiveness of chemical priming depends on various factors, such as the type of priming agent, concentration, timing of application, and the specific crop species. Furthermore, interactions with other agricultural practices, such as irrigation regimes and fertilization strategies, can influence its outcomes. Therefore, optimizing chemical priming protocols requires a comprehensive understanding of crop-specific responses and environmental factors. Despite its potential benefits, the widespread adoption of chemical priming in agriculture faces challenges related to cost-effectiveness, regulatory approval, and potential ecological impacts. Addressing these challenges requires further research to refine priming protocols, assess long-term effects on soil health and ecosystem functioning, and develop sustainable approaches for large-scale implementation.\",\"PeriodicalId\":507605,\"journal\":{\"name\":\"International Journal of Plant & Soil Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Plant & Soil Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.9734/ijpss/2024/v36i74719\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Plant & Soil Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.9734/ijpss/2024/v36i74719","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于气候变化、土壤退化以及对可持续生产方式的需求,农业生产率面临着日益严峻的挑战。化学引诱是一种用特定化合物对种子或植物进行预处理的技术,它已成为提高作物抗逆性、生产力和抗逆性的一种有前途的方法。本综述综述了目前有关化学引诱法在作物生产中应用的文献,重点关注其机制、对植物生理的影响及其优化农业实践的潜力。化学引诱通过多种机制发挥作用,包括诱导应激反应基因、增强抗氧化活性和调节激素信号通路。这些机制可提高发芽率、加速幼苗生长、增加养分吸收以及增强对各种非生物和生物胁迫的耐受性。此外,在不利的环境条件下,化学引诱已被证明能提高作物的产量和质量,使其成为可持续农业的重要工具。化学引诱剂的效果取决于多种因素,如引诱剂的类型、浓度、施用时间和特定作物种类。此外,与灌溉制度和施肥策略等其他农业实践的相互作用也会影响其效果。因此,优化化学引诱方案需要全面了解作物的特定反应和环境因素。尽管化学引诱法具有潜在的益处,但在农业中广泛采用化学引诱法仍面临着成本效益、监管审批和潜在生态影响等方面的挑战。要应对这些挑战,就需要进一步开展研究,以完善底肥方案,评估其对土壤健康和生态系统功能的长期影响,并为大规模实施开发可持续的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Optimizing Agriculture: A Review of Chemical Priming in Crop Production
Agricultural productivity faces increasing challenges due to climate change, soil degradation, and the need for sustainable practices. Chemical priming, a technique involving the pre-treatment of seeds or plants with specific compounds, has emerged as a promising approach to enhance crop resilience, productivity, and stress tolerance. This review synthesizes current literature on the application of chemical priming in crop production, focusing on its mechanisms, effects on plant physiology, and its potential to optimize agricultural practices. Chemical priming operates through diverse mechanisms, including the induction of stress-responsive genes, enhancement of antioxidant activity, and modulation of hormone signaling pathways. These mechanisms result in improved germination rates, accelerated seedling growth, increased nutrient uptake, and enhanced tolerance to various abiotic and biotic stresses. Moreover, chemical priming has been shown to promote crop yield and quality under adverse environmental conditions, making it a valuable tool for sustainable agriculture. The effectiveness of chemical priming depends on various factors, such as the type of priming agent, concentration, timing of application, and the specific crop species. Furthermore, interactions with other agricultural practices, such as irrigation regimes and fertilization strategies, can influence its outcomes. Therefore, optimizing chemical priming protocols requires a comprehensive understanding of crop-specific responses and environmental factors. Despite its potential benefits, the widespread adoption of chemical priming in agriculture faces challenges related to cost-effectiveness, regulatory approval, and potential ecological impacts. Addressing these challenges requires further research to refine priming protocols, assess long-term effects on soil health and ecosystem functioning, and develop sustainable approaches for large-scale implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信