利用 CVX 为精准医疗寻找最佳交叉设计的有效方法

Yin Li, Weng Kee Wong, Hua Zhou, Keumhee Chough Carriere
{"title":"利用 CVX 为精准医疗寻找最佳交叉设计的有效方法","authors":"Yin Li, Weng Kee Wong, Hua Zhou, Keumhee Chough Carriere","doi":"10.52933/jdssv.v4i3.83","DOIUrl":null,"url":null,"abstract":"Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design.  We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"9 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine\",\"authors\":\"Yin Li, Weng Kee Wong, Hua Zhou, Keumhee Chough Carriere\",\"doi\":\"10.52933/jdssv.v4i3.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design.  We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.\",\"PeriodicalId\":93459,\"journal\":{\"name\":\"Journal of data science, statistics, and visualisation\",\"volume\":\"9 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science, statistics, and visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52933/jdssv.v4i3.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v4i3.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

交叉设计在精准医疗中发挥着越来越重要的作用。我们展示了最优交叉设计的搜索可以表述为一个凸优化问题,并且凸优化工具(如 CVX)可以直接用于搜索最优交叉设计。 我们首先演示了如何将交叉设计问题转化为凸优化问题,并表明 CVX 可以毫不费力地找到与文献中一些理论交叉最优设计相吻合的最优交叉设计。当复杂模型的最优设计难以通过分析构建时,所提出的方法尤其有用。然后,我们将 CVX 应用于具有自相关误差结构的模型,或者当信息矩阵可能是奇异的且无法获得分析答案时的交叉设计。我们还构建了精准医疗中常用的 N-of-1 试验,以估计对个体的治疗效果或平均治疗效果,包括找到双目标最优交叉设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine
Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design.  We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信