{"title":"利用 CVX 为精准医疗寻找最佳交叉设计的有效方法","authors":"Yin Li, Weng Kee Wong, Hua Zhou, Keumhee Chough Carriere","doi":"10.52933/jdssv.v4i3.83","DOIUrl":null,"url":null,"abstract":"Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design. We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.","PeriodicalId":93459,"journal":{"name":"Journal of data science, statistics, and visualisation","volume":"9 34","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine\",\"authors\":\"Yin Li, Weng Kee Wong, Hua Zhou, Keumhee Chough Carriere\",\"doi\":\"10.52933/jdssv.v4i3.83\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design. We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.\",\"PeriodicalId\":93459,\"journal\":{\"name\":\"Journal of data science, statistics, and visualisation\",\"volume\":\"9 34\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of data science, statistics, and visualisation\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52933/jdssv.v4i3.83\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of data science, statistics, and visualisation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52933/jdssv.v4i3.83","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Efficient Way to Find Optimal Crossover Designs Using CVX for Precision Medicine
Crossover designs play an increasingly important role in precision medicine. We show the search of an optimal crossover design can be formulated as a convex optimization problem and convex optimization tools, such as CVX, can be directly used to search for an optimal crossover design. We first demonstrate how to transform crossover design problems into convex optimization problems and show CVX can effortlessly find optimal crossover designs that coincide with a few theoretical crossover optimal designs in the literature. The proposed approach is especially useful when it becomes problematic to construct optimal designs analytically for complicated models. We then apply CVX to find crossover designs for models with auto-correlated error structures or when the information matrices may be singular and analytical answers are unavailable. We also construct N-of-1 trials frequently used in precision medicine to estimate treatment effects on the individuals or to estimate average treatment effects, including finding dual-objective optimal crossover designs.