根据组织病理学图像对卵巢癌进行 Al-Powered 分类

H. Kussaibi, E. Alibrahim, E. Alamer, G. Alhaji, S. Alshehab, Z. Shabib, N. Alsafwani, R. G. Meneses
{"title":"根据组织病理学图像对卵巢癌进行 Al-Powered 分类","authors":"H. Kussaibi, E. Alibrahim, E. Alamer, G. Alhaji, S. Alshehab, Z. Shabib, N. Alsafwani, R. G. Meneses","doi":"10.1101/2024.06.05.24308520","DOIUrl":null,"url":null,"abstract":"Background: Ovarian cancer is the leading cause of gynecological cancer deaths due to late diagnosis and high recurrence rates. While histopathological analysis is the gold standard for diagnosis, artificial intelligence (AI) models have shown promise in accurately classifying ovarian cancer subtypes from histopathology images. Herein, we developed an AI pipeline for automated identification of epithelial ovarian cancer (EOC) subtypes based on histopathology images and evaluated its performance compared to the pathologists' diagnosis. Methods: A dataset of over 2 million image tiles from 82 whole slide images (WSIs) of the major EOC subtypes (clear cell, endometrioid, mucinous, serous) was curated from public and institutional sources. A convolutional neural network (ResNet50) was used to extract features which were then input to classifiers (CNN, and LightGBM) to predict the cancer subtype. Results: Both AI classifiers achieved patch-level accuracy (97-98%) on the test set. Furthermore, adding a class-weighted cross-entropy loss function to the pipeline showed better discriminative performance between the subtypes. Conclusion: AI models trained on histopathology image data can accurately classify EOC subtypes, potentially assisting pathologists and reducing subjectivity in ovarian cancer diagnosis.","PeriodicalId":506788,"journal":{"name":"medRxiv","volume":"18 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Al-Powered classification of Ovarian cancers Based on Histopathological lmages\",\"authors\":\"H. Kussaibi, E. Alibrahim, E. Alamer, G. Alhaji, S. Alshehab, Z. Shabib, N. Alsafwani, R. G. Meneses\",\"doi\":\"10.1101/2024.06.05.24308520\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Background: Ovarian cancer is the leading cause of gynecological cancer deaths due to late diagnosis and high recurrence rates. While histopathological analysis is the gold standard for diagnosis, artificial intelligence (AI) models have shown promise in accurately classifying ovarian cancer subtypes from histopathology images. Herein, we developed an AI pipeline for automated identification of epithelial ovarian cancer (EOC) subtypes based on histopathology images and evaluated its performance compared to the pathologists' diagnosis. Methods: A dataset of over 2 million image tiles from 82 whole slide images (WSIs) of the major EOC subtypes (clear cell, endometrioid, mucinous, serous) was curated from public and institutional sources. A convolutional neural network (ResNet50) was used to extract features which were then input to classifiers (CNN, and LightGBM) to predict the cancer subtype. Results: Both AI classifiers achieved patch-level accuracy (97-98%) on the test set. Furthermore, adding a class-weighted cross-entropy loss function to the pipeline showed better discriminative performance between the subtypes. Conclusion: AI models trained on histopathology image data can accurately classify EOC subtypes, potentially assisting pathologists and reducing subjectivity in ovarian cancer diagnosis.\",\"PeriodicalId\":506788,\"journal\":{\"name\":\"medRxiv\",\"volume\":\"18 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"medRxiv\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1101/2024.06.05.24308520\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.06.05.24308520","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:卵巢癌因诊断晚、复发率高而成为妇科癌症死亡的主要原因。虽然组织病理学分析是诊断的金标准,但人工智能(AI)模型已显示出从组织病理学图像中准确分类卵巢癌亚型的前景。在此,我们开发了一种基于组织病理学图像自动识别上皮性卵巢癌(EOC)亚型的人工智能管道,并评估了其与病理学家诊断相比的性能。方法从公共和机构来源收集了一个数据集,其中包含来自 82 张主要 EOC 亚型(透明细胞、子宫内膜样、粘液性、浆液性)全切片图像(WSI)的 200 多万张图像。使用卷积神经网络(ResNet50)提取特征,然后输入分类器(CNN 和 LightGBM)以预测癌症亚型。结果两种人工智能分类器在测试集上都达到了斑块级准确率(97-98%)。此外,在管道中添加类加权交叉熵损失函数后,亚型之间的区分性能更好。结论在组织病理学图像数据上训练的人工智能模型可以准确地对 EOC 亚型进行分类,从而为病理学家提供潜在的帮助,并减少卵巢癌诊断中的主观性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Al-Powered classification of Ovarian cancers Based on Histopathological lmages
Background: Ovarian cancer is the leading cause of gynecological cancer deaths due to late diagnosis and high recurrence rates. While histopathological analysis is the gold standard for diagnosis, artificial intelligence (AI) models have shown promise in accurately classifying ovarian cancer subtypes from histopathology images. Herein, we developed an AI pipeline for automated identification of epithelial ovarian cancer (EOC) subtypes based on histopathology images and evaluated its performance compared to the pathologists' diagnosis. Methods: A dataset of over 2 million image tiles from 82 whole slide images (WSIs) of the major EOC subtypes (clear cell, endometrioid, mucinous, serous) was curated from public and institutional sources. A convolutional neural network (ResNet50) was used to extract features which were then input to classifiers (CNN, and LightGBM) to predict the cancer subtype. Results: Both AI classifiers achieved patch-level accuracy (97-98%) on the test set. Furthermore, adding a class-weighted cross-entropy loss function to the pipeline showed better discriminative performance between the subtypes. Conclusion: AI models trained on histopathology image data can accurately classify EOC subtypes, potentially assisting pathologists and reducing subjectivity in ovarian cancer diagnosis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信