投影里德-穆勒型编码理论中的指示函数、v数和戈伦斯坦环

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Manuel González-Sarabia, Humberto Muñoz-George, Jorge A. Ordaz, Eduardo Sáenz-de-Cabezón, Rafael H. Villarreal
{"title":"投影里德-穆勒型编码理论中的指示函数、v数和戈伦斯坦环","authors":"Manuel González-Sarabia, Humberto Muñoz-George, Jorge A. Ordaz, Eduardo Sáenz-de-Cabezón, Rafael H. Villarreal","doi":"10.1007/s10623-024-01437-3","DOIUrl":null,"url":null,"abstract":"<p>For projective Reed–Muller-type codes we give a global duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide a global duality theorem for projective Reed–Muller-type codes over Gorenstein vanishing ideals, generalizing the known case where the vanishing ideal is a complete intersection. We classify self dual Reed–Muller-type codes over Gorenstein ideals using the regularity and a parity check matrix. For projective evaluation codes, we give a duality theorem inspired by that of affine evaluation codes. We show how to compute the regularity index of the <i>r</i>-th generalized Hamming weight function in terms of the standard indicator functions of the set of evaluation points.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Indicator functions, v-numbers and Gorenstein rings in the theory of projective Reed–Muller-type codes\",\"authors\":\"Manuel González-Sarabia, Humberto Muñoz-George, Jorge A. Ordaz, Eduardo Sáenz-de-Cabezón, Rafael H. Villarreal\",\"doi\":\"10.1007/s10623-024-01437-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For projective Reed–Muller-type codes we give a global duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide a global duality theorem for projective Reed–Muller-type codes over Gorenstein vanishing ideals, generalizing the known case where the vanishing ideal is a complete intersection. We classify self dual Reed–Muller-type codes over Gorenstein ideals using the regularity and a parity check matrix. For projective evaluation codes, we give a duality theorem inspired by that of affine evaluation codes. We show how to compute the regularity index of the <i>r</i>-th generalized Hamming weight function in terms of the standard indicator functions of the set of evaluation points.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10623-024-01437-3\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10623-024-01437-3","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

对于射影里德-穆勒型码,我们给出了一个以消失理想的 v 数和希尔伯特函数为基础的全局对偶准则。作为应用,我们提供了戈伦斯坦消失理想上的射影里德-穆勒型码的全局对偶定理,推广了消失理想是完全交集的已知情况。我们利用正则性和奇偶校验矩阵对 Gorenstein 理想上的自对偶 Reed-Muller 型编码进行了分类。对于射影评价码,我们给出了一个受仿射评价码启发的对偶性定理。我们展示了如何根据评价点集合的标准指示函数计算 r 次广义汉明权重函数的正则性指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Indicator functions, v-numbers and Gorenstein rings in the theory of projective Reed–Muller-type codes

Indicator functions, v-numbers and Gorenstein rings in the theory of projective Reed–Muller-type codes

For projective Reed–Muller-type codes we give a global duality criterion in terms of the v-number and the Hilbert function of a vanishing ideal. As an application, we provide a global duality theorem for projective Reed–Muller-type codes over Gorenstein vanishing ideals, generalizing the known case where the vanishing ideal is a complete intersection. We classify self dual Reed–Muller-type codes over Gorenstein ideals using the regularity and a parity check matrix. For projective evaluation codes, we give a duality theorem inspired by that of affine evaluation codes. We show how to compute the regularity index of the r-th generalized Hamming weight function in terms of the standard indicator functions of the set of evaluation points.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信