多孔介质问题的 Mittag-Leffler 稳定性和 Lyapunov 稳定性

IF 2.5 2区 数学 Q1 MATHEMATICS
Jamilu Hashim Hassan, Nasser-eddine Tatar, Banan Al-Homidan
{"title":"多孔介质问题的 Mittag-Leffler 稳定性和 Lyapunov 稳定性","authors":"Jamilu Hashim Hassan, Nasser-eddine Tatar, Banan Al-Homidan","doi":"10.1007/s13540-024-00299-9","DOIUrl":null,"url":null,"abstract":"<p>A fractional order problem arising in porous media is considered. Well-posedness as well as stability are discussed. Mittag-Leffler stability is proved in case of a strong fractional damping in the displacement component and a fractional frictional one in the volume fraction component. This extends an existing result from the integer-order (second-order) case to the non-integer case. In the absence of the fractional damping in the volume fraction component, it is shown a convergence to zero and a Lyapunov uniform stability.</p>","PeriodicalId":48928,"journal":{"name":"Fractional Calculus and Applied Analysis","volume":"78 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mittag-Leffler stability and Lyapunov stability for a problem arising in porous media\",\"authors\":\"Jamilu Hashim Hassan, Nasser-eddine Tatar, Banan Al-Homidan\",\"doi\":\"10.1007/s13540-024-00299-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A fractional order problem arising in porous media is considered. Well-posedness as well as stability are discussed. Mittag-Leffler stability is proved in case of a strong fractional damping in the displacement component and a fractional frictional one in the volume fraction component. This extends an existing result from the integer-order (second-order) case to the non-integer case. In the absence of the fractional damping in the volume fraction component, it is shown a convergence to zero and a Lyapunov uniform stability.</p>\",\"PeriodicalId\":48928,\"journal\":{\"name\":\"Fractional Calculus and Applied Analysis\",\"volume\":\"78 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractional Calculus and Applied Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s13540-024-00299-9\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractional Calculus and Applied Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s13540-024-00299-9","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

研究了多孔介质中出现的分数阶问题。讨论了问题的好拟性和稳定性。在位移分量中存在强分数阻尼和体积分数分量中存在分数摩擦阻尼的情况下,证明了 Mittag-Leffler 稳定性。这将现有的整数阶(二阶)结果扩展到了非整数阶。在体积分数分量中不存在分数阻尼的情况下,可以证明其趋近于零且具有李亚普诺夫均匀稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Mittag-Leffler stability and Lyapunov stability for a problem arising in porous media

Mittag-Leffler stability and Lyapunov stability for a problem arising in porous media

A fractional order problem arising in porous media is considered. Well-posedness as well as stability are discussed. Mittag-Leffler stability is proved in case of a strong fractional damping in the displacement component and a fractional frictional one in the volume fraction component. This extends an existing result from the integer-order (second-order) case to the non-integer case. In the absence of the fractional damping in the volume fraction component, it is shown a convergence to zero and a Lyapunov uniform stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fractional Calculus and Applied Analysis
Fractional Calculus and Applied Analysis MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.70
自引率
16.70%
发文量
101
期刊介绍: Fractional Calculus and Applied Analysis (FCAA, abbreviated in the World databases as Fract. Calc. Appl. Anal. or FRACT CALC APPL ANAL) is a specialized international journal for theory and applications of an important branch of Mathematical Analysis (Calculus) where differentiations and integrations can be of arbitrary non-integer order. The high standards of its contents are guaranteed by the prominent members of Editorial Board and the expertise of invited external reviewers, and proven by the recently achieved high values of impact factor (JIF) and impact rang (SJR), launching the journal to top places of the ranking lists of Thomson Reuters and Scopus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信