基于现场监测的大跨度悬索桥长悬臂涡激振动及其对局部桥面加速度的影响

IF 4.6 2区 工程技术 Q1 CONSTRUCTION & BUILDING TECHNOLOGY
Xun Su, Jianxiao Mao, Hao Wang, Hui Gao, Xiaoming Guo, Hai Zong
{"title":"基于现场监测的大跨度悬索桥长悬臂涡激振动及其对局部桥面加速度的影响","authors":"Xun Su,&nbsp;Jianxiao Mao,&nbsp;Hao Wang,&nbsp;Hui Gao,&nbsp;Xiaoming Guo,&nbsp;Hai Zong","doi":"10.1155/2024/1472626","DOIUrl":null,"url":null,"abstract":"<div>\n <p>As the main structural component, the possibility of wind-induced vibration, especially vortex-induced vibrations (VIVs), is greatly increased due to the shape and structural characteristics of the long suspenders. To investigate the full-scale wind-induced vibration of the long suspenders of a long-span suspension bridge with a main span of 1418 m, the long-term vibration-based monitoring system was established. Based on the recorded structural health monitoring (SHM) data, the corresponding wind conditions and the vibration characteristics of long suspenders with different diameters and tensions are investigated. Furthermore, modal parameters including frequencies and damping ratios of long suspenders are identified and tracked during the VIV period. The relationship between the shedding frequency of long suspenders and the corresponding wind speed is studied. Results show that the VIVs with frequencies ranging from 8 Hz to 20 Hz were observed continuously across a wide range of wind speeds in both sets of long suspenders. Due to the relatively low modal damping, significant vortex characteristics and lock-in phenomena can be expected on the long suspenders. A new frequency-adjustable Stockbridge damper is employed to suppress multimodal VIVs in the long suspenders. The effectiveness of Stockbridge damper is verified through field application and comparative analysis. Finally, the effect of long suspender VIVs on local deck vibration is discussed, and it is clarified that the bridge deck vibration is mainly caused by multimodal VIVs of the long suspenders, rather than by external loads such as vehicles and wind. The study endeavors to provide a case to progress the identification, assessment, and control of long suspender VIVs in similar long-span bridges.</p>\n </div>","PeriodicalId":49471,"journal":{"name":"Structural Control & Health Monitoring","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1472626","citationCount":"0","resultStr":"{\"title\":\"Vortex-Induced Vibration of Long Suspenders of a Long-Span Suspension Bridge and Its Effect on Local Deck Acceleration Based on Field Monitoring\",\"authors\":\"Xun Su,&nbsp;Jianxiao Mao,&nbsp;Hao Wang,&nbsp;Hui Gao,&nbsp;Xiaoming Guo,&nbsp;Hai Zong\",\"doi\":\"10.1155/2024/1472626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>As the main structural component, the possibility of wind-induced vibration, especially vortex-induced vibrations (VIVs), is greatly increased due to the shape and structural characteristics of the long suspenders. To investigate the full-scale wind-induced vibration of the long suspenders of a long-span suspension bridge with a main span of 1418 m, the long-term vibration-based monitoring system was established. Based on the recorded structural health monitoring (SHM) data, the corresponding wind conditions and the vibration characteristics of long suspenders with different diameters and tensions are investigated. Furthermore, modal parameters including frequencies and damping ratios of long suspenders are identified and tracked during the VIV period. The relationship between the shedding frequency of long suspenders and the corresponding wind speed is studied. Results show that the VIVs with frequencies ranging from 8 Hz to 20 Hz were observed continuously across a wide range of wind speeds in both sets of long suspenders. Due to the relatively low modal damping, significant vortex characteristics and lock-in phenomena can be expected on the long suspenders. A new frequency-adjustable Stockbridge damper is employed to suppress multimodal VIVs in the long suspenders. The effectiveness of Stockbridge damper is verified through field application and comparative analysis. Finally, the effect of long suspender VIVs on local deck vibration is discussed, and it is clarified that the bridge deck vibration is mainly caused by multimodal VIVs of the long suspenders, rather than by external loads such as vehicles and wind. The study endeavors to provide a case to progress the identification, assessment, and control of long suspender VIVs in similar long-span bridges.</p>\\n </div>\",\"PeriodicalId\":49471,\"journal\":{\"name\":\"Structural Control & Health Monitoring\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/2024/1472626\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control & Health Monitoring\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/2024/1472626\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control & Health Monitoring","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/2024/1472626","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

作为主要的结构部件,由于长悬臂的形状和结构特点,风致振动,尤其是涡致振动(VIVs)的可能性大大增加。为了全面研究主跨为 1418 米的大跨度悬索桥长悬臂的风致振动,建立了基于振动的长期监测系统。根据记录的结构健康监测(SHM)数据,研究了相应的风力条件以及不同直径和张力的长悬带的振动特性。此外,还确定并跟踪了长吊带在 VIV 期间的模态参数,包括频率和阻尼比。研究了长吊带的脱落频率与相应风速之间的关系。结果表明,两组长吊带在很宽的风速范围内都能持续观察到频率在 8 赫兹到 20 赫兹之间的 VIV。由于模态阻尼相对较低,预计长吊带上会出现明显的涡流特性和锁定现象。新型频率可调斯托克布里奇阻尼器用于抑制长吊带上的多模态 VIV。通过现场应用和对比分析,验证了斯托克布里奇阻尼器的有效性。最后,讨论了长悬臂 VIV 对局部桥面振动的影响,明确了桥面振动主要是由长悬臂的多模态 VIV 引起的,而不是由车辆和风等外部荷载引起的。该研究致力于为类似大跨度桥梁中长悬臂 VIVs 的识别、评估和控制提供案例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Vortex-Induced Vibration of Long Suspenders of a Long-Span Suspension Bridge and Its Effect on Local Deck Acceleration Based on Field Monitoring

Vortex-Induced Vibration of Long Suspenders of a Long-Span Suspension Bridge and Its Effect on Local Deck Acceleration Based on Field Monitoring

As the main structural component, the possibility of wind-induced vibration, especially vortex-induced vibrations (VIVs), is greatly increased due to the shape and structural characteristics of the long suspenders. To investigate the full-scale wind-induced vibration of the long suspenders of a long-span suspension bridge with a main span of 1418 m, the long-term vibration-based monitoring system was established. Based on the recorded structural health monitoring (SHM) data, the corresponding wind conditions and the vibration characteristics of long suspenders with different diameters and tensions are investigated. Furthermore, modal parameters including frequencies and damping ratios of long suspenders are identified and tracked during the VIV period. The relationship between the shedding frequency of long suspenders and the corresponding wind speed is studied. Results show that the VIVs with frequencies ranging from 8 Hz to 20 Hz were observed continuously across a wide range of wind speeds in both sets of long suspenders. Due to the relatively low modal damping, significant vortex characteristics and lock-in phenomena can be expected on the long suspenders. A new frequency-adjustable Stockbridge damper is employed to suppress multimodal VIVs in the long suspenders. The effectiveness of Stockbridge damper is verified through field application and comparative analysis. Finally, the effect of long suspender VIVs on local deck vibration is discussed, and it is clarified that the bridge deck vibration is mainly caused by multimodal VIVs of the long suspenders, rather than by external loads such as vehicles and wind. The study endeavors to provide a case to progress the identification, assessment, and control of long suspender VIVs in similar long-span bridges.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Structural Control & Health Monitoring
Structural Control & Health Monitoring 工程技术-工程:土木
CiteScore
9.50
自引率
13.00%
发文量
234
审稿时长
8 months
期刊介绍: The Journal Structural Control and Health Monitoring encompasses all theoretical and technological aspects of structural control, structural health monitoring theory and smart materials and structures. The journal focuses on aerospace, civil, infrastructure and mechanical engineering applications. Original contributions based on analytical, computational and experimental methods are solicited in three main areas: monitoring, control, and smart materials and structures, covering subjects such as system identification, health monitoring, health diagnostics, multi-functional materials, signal processing, sensor technology, passive, active and semi active control schemes and implementations, shape memory alloys, piezoelectrics and mechatronics. Also of interest are actuator design, dynamic systems, dynamic stability, artificial intelligence tools, data acquisition, wireless communications, measurements, MEMS/NEMS sensors for local damage detection, optical fibre sensors for health monitoring, remote control of monitoring systems, sensor-logger combinations for mobile applications, corrosion sensors, scour indicators and experimental techniques.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信