{"title":"MPSA-DenseNet:用于英语口音分类的新型深度学习模型","authors":"Tianyu Song , Linh Thi Hoai Nguyen , Ton Viet Ta","doi":"10.1016/j.csl.2024.101676","DOIUrl":null,"url":null,"abstract":"<div><p>This paper presents three innovative deep learning models for English accent classification: Multi-task Pyramid Split Attention- Densely Convolutional Networks (MPSA-DenseNet), Pyramid Split Attention- Densely Convolutional Networks (PSA-DenseNet), and Multi-task- Densely Convolutional Networks (Multi-DenseNet), that combine multi-task learning and/or the PSA module attention mechanism with DenseNet. We applied these models to data collected from five dialects of English across native English-speaking regions (England, the United States) and nonnative English-speaking regions (Hong Kong, Germany, India). Our experimental results show a significant improvement in classification accuracy, particularly with MPSA-DenseNet, which outperforms all other models, including Densely Convolutional Networks (DenseNet) and Efficient Pyramid Squeeze Attention (EPSA) models previously used for accent identification. Our findings indicate that MPSA-DenseNet is a highly promising model for accurately identifying English accents.</p></div>","PeriodicalId":50638,"journal":{"name":"Computer Speech and Language","volume":"89 ","pages":"Article 101676"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0885230824000597/pdfft?md5=45eac4ef8fe33cc3af54ca5ce1756899&pid=1-s2.0-S0885230824000597-main.pdf","citationCount":"0","resultStr":"{\"title\":\"MPSA-DenseNet: A novel deep learning model for English accent classification\",\"authors\":\"Tianyu Song , Linh Thi Hoai Nguyen , Ton Viet Ta\",\"doi\":\"10.1016/j.csl.2024.101676\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper presents three innovative deep learning models for English accent classification: Multi-task Pyramid Split Attention- Densely Convolutional Networks (MPSA-DenseNet), Pyramid Split Attention- Densely Convolutional Networks (PSA-DenseNet), and Multi-task- Densely Convolutional Networks (Multi-DenseNet), that combine multi-task learning and/or the PSA module attention mechanism with DenseNet. We applied these models to data collected from five dialects of English across native English-speaking regions (England, the United States) and nonnative English-speaking regions (Hong Kong, Germany, India). Our experimental results show a significant improvement in classification accuracy, particularly with MPSA-DenseNet, which outperforms all other models, including Densely Convolutional Networks (DenseNet) and Efficient Pyramid Squeeze Attention (EPSA) models previously used for accent identification. Our findings indicate that MPSA-DenseNet is a highly promising model for accurately identifying English accents.</p></div>\",\"PeriodicalId\":50638,\"journal\":{\"name\":\"Computer Speech and Language\",\"volume\":\"89 \",\"pages\":\"Article 101676\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000597/pdfft?md5=45eac4ef8fe33cc3af54ca5ce1756899&pid=1-s2.0-S0885230824000597-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computer Speech and Language\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0885230824000597\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Speech and Language","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0885230824000597","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
MPSA-DenseNet: A novel deep learning model for English accent classification
This paper presents three innovative deep learning models for English accent classification: Multi-task Pyramid Split Attention- Densely Convolutional Networks (MPSA-DenseNet), Pyramid Split Attention- Densely Convolutional Networks (PSA-DenseNet), and Multi-task- Densely Convolutional Networks (Multi-DenseNet), that combine multi-task learning and/or the PSA module attention mechanism with DenseNet. We applied these models to data collected from five dialects of English across native English-speaking regions (England, the United States) and nonnative English-speaking regions (Hong Kong, Germany, India). Our experimental results show a significant improvement in classification accuracy, particularly with MPSA-DenseNet, which outperforms all other models, including Densely Convolutional Networks (DenseNet) and Efficient Pyramid Squeeze Attention (EPSA) models previously used for accent identification. Our findings indicate that MPSA-DenseNet is a highly promising model for accurately identifying English accents.
期刊介绍:
Computer Speech & Language publishes reports of original research related to the recognition, understanding, production, coding and mining of speech and language.
The speech and language sciences have a long history, but it is only relatively recently that large-scale implementation of and experimentation with complex models of speech and language processing has become feasible. Such research is often carried out somewhat separately by practitioners of artificial intelligence, computer science, electronic engineering, information retrieval, linguistics, phonetics, or psychology.