12 种蔷薇科植物中 bZIP 转录因子的全基因组鉴定以及 EjbZIPs 应对盐胁迫的新机制建模。

IF 3.9 2区 生物学 Q1 GENETICS & HEREDITY
Plant Genome Pub Date : 2024-06-05 DOI:10.1002/tpg2.20468
Ling Zhu, Mengjie Zhang, Xiuyao Yang, Yinqiang Zi, Tuo Yin, Xulin Li, Ke Wen, Ke Zhao, Jiaqiong Wan, Huiyun Zhang, Xinping Luo, Hanyao Zhang
{"title":"12 种蔷薇科植物中 bZIP 转录因子的全基因组鉴定以及 EjbZIPs 应对盐胁迫的新机制建模。","authors":"Ling Zhu, Mengjie Zhang, Xiuyao Yang, Yinqiang Zi, Tuo Yin, Xulin Li, Ke Wen, Ke Zhao, Jiaqiong Wan, Huiyun Zhang, Xinping Luo, Hanyao Zhang","doi":"10.1002/tpg2.20468","DOIUrl":null,"url":null,"abstract":"<p><p>In plantae, basic leucine zipper (bZIP) transcription factors (TFs) are widespread and regulate a variety of biological processes under abiotic stress. However, it has not been extensively studied in Rosaceae, and the functional effects of bZIP on Eriobotrya japonica under salt stress are still unknown. Therefore, in this study, the bZIP TF family of 12 species of Rosaceae was analyzed by bioinformatics method, and the expression profile and quantitative real-time polymerase chain reaction of E. japonica under salt stress were analyzed. The results showed that a total of 869 bZIP TFs were identified in 12 species of Rosaceae and divided into nine subfamilies. Differences in promoter cis-elements between subfamilies vary depending on their role. Species belonging to the same subfamily have a similar number of chromosomes and the number of genes contained on each chromosome. Gene duplication analysis has found segmental duplication to be a prime force in the evolution of Rosaceae species. In addition, nine EjbZIPs were significantly different, including seven up-regulated and two down-regulated in E. japonica under salt stress. Especially, EjbZIP13 was involved in the expression of SA-responsive proteins by binding to the NPR1 gene. EjbZIP27, EjbZIP30, and EjbZIP38 were highly expressed in E. japonica under salt stress, thus improving the salt tolerance capacity of the plants. These results can provide a theoretical basis for exploring the characteristics and functions of the bZIP TF family in more species and breeding salt-tolerant E. japonica varieties. It also provides a reference for resolving the response mechanism of bZIP TF in 12 Rosaceae species under salt stress.</p>","PeriodicalId":49002,"journal":{"name":"Plant Genome","volume":null,"pages":null},"PeriodicalIF":3.9000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Genome-wide identification of bZIP transcription factors in 12 Rosaceae species and modeling of novel mechanisms of EjbZIPs response to salt stress.\",\"authors\":\"Ling Zhu, Mengjie Zhang, Xiuyao Yang, Yinqiang Zi, Tuo Yin, Xulin Li, Ke Wen, Ke Zhao, Jiaqiong Wan, Huiyun Zhang, Xinping Luo, Hanyao Zhang\",\"doi\":\"10.1002/tpg2.20468\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In plantae, basic leucine zipper (bZIP) transcription factors (TFs) are widespread and regulate a variety of biological processes under abiotic stress. However, it has not been extensively studied in Rosaceae, and the functional effects of bZIP on Eriobotrya japonica under salt stress are still unknown. Therefore, in this study, the bZIP TF family of 12 species of Rosaceae was analyzed by bioinformatics method, and the expression profile and quantitative real-time polymerase chain reaction of E. japonica under salt stress were analyzed. The results showed that a total of 869 bZIP TFs were identified in 12 species of Rosaceae and divided into nine subfamilies. Differences in promoter cis-elements between subfamilies vary depending on their role. Species belonging to the same subfamily have a similar number of chromosomes and the number of genes contained on each chromosome. Gene duplication analysis has found segmental duplication to be a prime force in the evolution of Rosaceae species. In addition, nine EjbZIPs were significantly different, including seven up-regulated and two down-regulated in E. japonica under salt stress. Especially, EjbZIP13 was involved in the expression of SA-responsive proteins by binding to the NPR1 gene. EjbZIP27, EjbZIP30, and EjbZIP38 were highly expressed in E. japonica under salt stress, thus improving the salt tolerance capacity of the plants. These results can provide a theoretical basis for exploring the characteristics and functions of the bZIP TF family in more species and breeding salt-tolerant E. japonica varieties. It also provides a reference for resolving the response mechanism of bZIP TF in 12 Rosaceae species under salt stress.</p>\",\"PeriodicalId\":49002,\"journal\":{\"name\":\"Plant Genome\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Genome\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1002/tpg2.20468\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GENETICS & HEREDITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Genome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1002/tpg2.20468","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GENETICS & HEREDITY","Score":null,"Total":0}
引用次数: 0

摘要

碱性亮氨酸拉链(bZIP)转录因子(TFs)广泛存在于植物中,在非生物胁迫下调控多种生物过程。然而,在蔷薇科植物中,bZIP 的研究并不广泛,其对盐胁迫下枇杷的功能影响也尚不清楚。因此,本研究采用生物信息学方法分析了 12 种蔷薇科植物的 bZIP TF 家族,并对盐胁迫下粳稻的表达谱和实时定量聚合酶链反应进行了分析。结果表明,在 12 种蔷薇科植物中共鉴定出 869 个 bZIP TFs,分为 9 个亚科。不同亚家族的启动子顺式元件因作用不同而存在差异。属于同一亚家族的物种具有相似的染色体数目和每条染色体上包含的基因数目。基因复制分析发现,节段复制是蔷薇科物种进化的主要力量。此外,9个EjbZIPs在盐胁迫下有显著差异,其中7个上调,2个下调。其中,EjbZIP13通过与NPR1基因结合参与了SA响应蛋白的表达。在盐胁迫下,EjbZIP27、EjbZIP30和EjbZIP38在粳稻中高表达,从而提高了植株的耐盐能力。这些结果可为探索bZIP TF家族在更多物种中的特性和功能、培育耐盐粳稻品种提供理论依据。同时也为解析12种蔷薇科植物在盐胁迫下bZIP TF的响应机制提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Genome-wide identification of bZIP transcription factors in 12 Rosaceae species and modeling of novel mechanisms of EjbZIPs response to salt stress.

In plantae, basic leucine zipper (bZIP) transcription factors (TFs) are widespread and regulate a variety of biological processes under abiotic stress. However, it has not been extensively studied in Rosaceae, and the functional effects of bZIP on Eriobotrya japonica under salt stress are still unknown. Therefore, in this study, the bZIP TF family of 12 species of Rosaceae was analyzed by bioinformatics method, and the expression profile and quantitative real-time polymerase chain reaction of E. japonica under salt stress were analyzed. The results showed that a total of 869 bZIP TFs were identified in 12 species of Rosaceae and divided into nine subfamilies. Differences in promoter cis-elements between subfamilies vary depending on their role. Species belonging to the same subfamily have a similar number of chromosomes and the number of genes contained on each chromosome. Gene duplication analysis has found segmental duplication to be a prime force in the evolution of Rosaceae species. In addition, nine EjbZIPs were significantly different, including seven up-regulated and two down-regulated in E. japonica under salt stress. Especially, EjbZIP13 was involved in the expression of SA-responsive proteins by binding to the NPR1 gene. EjbZIP27, EjbZIP30, and EjbZIP38 were highly expressed in E. japonica under salt stress, thus improving the salt tolerance capacity of the plants. These results can provide a theoretical basis for exploring the characteristics and functions of the bZIP TF family in more species and breeding salt-tolerant E. japonica varieties. It also provides a reference for resolving the response mechanism of bZIP TF in 12 Rosaceae species under salt stress.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Plant Genome
Plant Genome PLANT SCIENCES-GENETICS & HEREDITY
CiteScore
6.00
自引率
4.80%
发文量
93
审稿时长
>12 weeks
期刊介绍: The Plant Genome publishes original research investigating all aspects of plant genomics. Technical breakthroughs reporting improvements in the efficiency and speed of acquiring and interpreting plant genomics data are welcome. The editorial board gives preference to novel reports that use innovative genomic applications that advance our understanding of plant biology that may have applications to crop improvement. The journal also publishes invited review articles and perspectives that offer insight and commentary on recent advances in genomics and their potential for agronomic improvement.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信