Quang H. Nguyen, Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen
{"title":"预测短抗菌肽的高效混合深度学习架构。","authors":"Quang H. Nguyen, Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen","doi":"10.1002/pmic.202300382","DOIUrl":null,"url":null,"abstract":"<p>Short-length antimicrobial peptides (AMPs) have been demonstrated to have intensified antimicrobial activities against a wide spectrum of microbes. Therefore, exploration of novel and promising short AMPs is highly essential in developing various types of antimicrobial drugs or treatments. In addition to experimental approaches, computational methods have been developed to improve screening efficiency. Although existing computational methods have achieved satisfactory performance, there is still much room for model improvement. In this study, we proposed iAMP-DL, an efficient hybrid deep learning architecture, for predicting short AMPs. The model was constructed using two well-known deep learning architectures: the long short-term memory architecture and convolutional neural networks. To fairly assess the performance of the model, we compared our model with existing state-of-the-art methods using the same independent test set. Our comparative analysis shows that iAMP-DL outperformed other methods. Furthermore, to assess the robustness and stability of our model, the experiments were repeated 10 times to observe the variation in prediction efficiency. The results demonstrate that iAMP-DL is an effective, robust, and stable framework for detecting promising short AMPs. Another comparative study of different negative data sampling methods also confirms the effectiveness of our method and demonstrates that it can also be used to develop a robust model for predicting AMPs in general. The proposed framework was also deployed as an online web server with a user-friendly interface to support the research community in identifying short AMPs.</p>","PeriodicalId":224,"journal":{"name":"Proteomics","volume":"24 14","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300382","citationCount":"0","resultStr":"{\"title\":\"An efficient hybrid deep learning architecture for predicting short antimicrobial peptides\",\"authors\":\"Quang H. Nguyen, Thanh-Hoang Nguyen-Vo, Trang T. T. Do, Binh P. Nguyen\",\"doi\":\"10.1002/pmic.202300382\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Short-length antimicrobial peptides (AMPs) have been demonstrated to have intensified antimicrobial activities against a wide spectrum of microbes. Therefore, exploration of novel and promising short AMPs is highly essential in developing various types of antimicrobial drugs or treatments. In addition to experimental approaches, computational methods have been developed to improve screening efficiency. Although existing computational methods have achieved satisfactory performance, there is still much room for model improvement. In this study, we proposed iAMP-DL, an efficient hybrid deep learning architecture, for predicting short AMPs. The model was constructed using two well-known deep learning architectures: the long short-term memory architecture and convolutional neural networks. To fairly assess the performance of the model, we compared our model with existing state-of-the-art methods using the same independent test set. Our comparative analysis shows that iAMP-DL outperformed other methods. Furthermore, to assess the robustness and stability of our model, the experiments were repeated 10 times to observe the variation in prediction efficiency. The results demonstrate that iAMP-DL is an effective, robust, and stable framework for detecting promising short AMPs. Another comparative study of different negative data sampling methods also confirms the effectiveness of our method and demonstrates that it can also be used to develop a robust model for predicting AMPs in general. The proposed framework was also deployed as an online web server with a user-friendly interface to support the research community in identifying short AMPs.</p>\",\"PeriodicalId\":224,\"journal\":{\"name\":\"Proteomics\",\"volume\":\"24 14\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pmic.202300382\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteomics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300382\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteomics","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pmic.202300382","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
An efficient hybrid deep learning architecture for predicting short antimicrobial peptides
Short-length antimicrobial peptides (AMPs) have been demonstrated to have intensified antimicrobial activities against a wide spectrum of microbes. Therefore, exploration of novel and promising short AMPs is highly essential in developing various types of antimicrobial drugs or treatments. In addition to experimental approaches, computational methods have been developed to improve screening efficiency. Although existing computational methods have achieved satisfactory performance, there is still much room for model improvement. In this study, we proposed iAMP-DL, an efficient hybrid deep learning architecture, for predicting short AMPs. The model was constructed using two well-known deep learning architectures: the long short-term memory architecture and convolutional neural networks. To fairly assess the performance of the model, we compared our model with existing state-of-the-art methods using the same independent test set. Our comparative analysis shows that iAMP-DL outperformed other methods. Furthermore, to assess the robustness and stability of our model, the experiments were repeated 10 times to observe the variation in prediction efficiency. The results demonstrate that iAMP-DL is an effective, robust, and stable framework for detecting promising short AMPs. Another comparative study of different negative data sampling methods also confirms the effectiveness of our method and demonstrates that it can also be used to develop a robust model for predicting AMPs in general. The proposed framework was also deployed as an online web server with a user-friendly interface to support the research community in identifying short AMPs.
期刊介绍:
PROTEOMICS is the premier international source for information on all aspects of applications and technologies, including software, in proteomics and other "omics". The journal includes but is not limited to proteomics, genomics, transcriptomics, metabolomics and lipidomics, and systems biology approaches. Papers describing novel applications of proteomics and integration of multi-omics data and approaches are especially welcome.