卡洛吉罗-莫瑟-萨瑟兰型交织导数薛定谔系统

IF 1.3 3区 物理与天体物理 Q3 PHYSICS, MATHEMATICAL
Ruoci Sun
{"title":"卡洛吉罗-莫瑟-萨瑟兰型交织导数薛定谔系统","authors":"Ruoci Sun","doi":"10.1007/s11005-024-01815-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS) </p><div><div><span>$$\\begin{aligned} \\small i\\partial _t u + \\partial _x^2 u = \\pm u \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( |u|^2 \\right) , \\quad \\textrm{D}= -i\\partial _x, \\quad x \\in \\mathbb {R} \\quad \\textrm{or} \\quad x \\in \\mathbb {T}:= \\mathbb {R}/2 \\pi \\mathbb {Z}, \\end{aligned}$$</span></div></div><p>which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system, </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} i\\partial _t U + \\partial _x^2 U = - \\tfrac{1}{2} U \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( V^* U\\right) - \\tfrac{1}{2} V \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( U^* U\\right) ,\\\\ i\\partial _t V + \\partial _x^2 V = - \\tfrac{1}{2} V \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( U^* V\\right) - \\tfrac{1}{2} U \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( V^* V\\right) .\\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type\",\"authors\":\"Ruoci Sun\",\"doi\":\"10.1007/s11005-024-01815-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS) </p><div><div><span>$$\\\\begin{aligned} \\\\small i\\\\partial _t u + \\\\partial _x^2 u = \\\\pm u \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( |u|^2 \\\\right) , \\\\quad \\\\textrm{D}= -i\\\\partial _x, \\\\quad x \\\\in \\\\mathbb {R} \\\\quad \\\\textrm{or} \\\\quad x \\\\in \\\\mathbb {T}:= \\\\mathbb {R}/2 \\\\pi \\\\mathbb {Z}, \\\\end{aligned}$$</span></div></div><p>which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system, </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} i\\\\partial _t U + \\\\partial _x^2 U = - \\\\tfrac{1}{2} U \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( V^* U\\\\right) - \\\\tfrac{1}{2} V \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( U^* U\\\\right) ,\\\\\\\\ i\\\\partial _t V + \\\\partial _x^2 V = - \\\\tfrac{1}{2} V \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( U^* V\\\\right) - \\\\tfrac{1}{2} U \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( V^* V\\\\right) .\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01815-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01815-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文致力于扩展聚焦/去聚焦卡洛吉罗-莫泽-萨瑟兰三次导数薛定谔方程(CMSdNLS) $$\begin{aligned}\mall i\partial _t u + \partial _x^2 u = \pm u \left( \textrm{D} + |\textrm{D}| \right) \left( |u|^2 \right) , \quad \textrm{D}= -i\partial _x, \quad x \in \mathbb {R} \quad \textrm{or}\quad x \in \mathbb {T}:= \mathbb {R}/2 \pi \mathbb {Z}, \end{aligned}$$最初由 Matsuno(Phys Lett A 278(1-2):53-58, 2000; Inverse Probl 18:1101-1125, 2002; J Phys Soc Jpn 71(6):1415-1418, 2002; Inverse Prob 20(2):437-445, 2004)、Abanov et al.(J Phys A 42(13):135201, 2009)、Gérard 和 Lenzmann (The Calogero-Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) 和 Badreddine (On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero-Sutherland derivative nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire.01592),到两个矩阵值变量的系统,导致下面的交织系统,$$\begin{aligned}{\left\{ \begin{array}{ll} i\partial _t U + \partial _x^2 U = - \tfrac{1}{2}U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2}V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* U\right) ,\ i\partial _t V + \partial _x^2 V = - \tfrac{1}{2}V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2}U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* V\right) .\end{array}\right.}\end{aligned}$$这个系统具有拉克斯对结构,使得我们能够为一维环面和实线上的一般解建立一个明确的公式。因此,这个系统可以被视为线性薛定谔方程和 CMSdNLS方程的可积分扰动和扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type

This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS)

$$\begin{aligned} \small i\partial _t u + \partial _x^2 u = \pm u \left( \textrm{D} + |\textrm{D}| \right) \left( |u|^2 \right) , \quad \textrm{D}= -i\partial _x, \quad x \in \mathbb {R} \quad \textrm{or} \quad x \in \mathbb {T}:= \mathbb {R}/2 \pi \mathbb {Z}, \end{aligned}$$

which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system,

$$\begin{aligned} {\left\{ \begin{array}{ll} i\partial _t U + \partial _x^2 U = - \tfrac{1}{2} U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2} V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* U\right) ,\\ i\partial _t V + \partial _x^2 V = - \tfrac{1}{2} V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2} U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* V\right) .\\ \end{array}\right. } \end{aligned}$$

This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Letters in Mathematical Physics
Letters in Mathematical Physics 物理-物理:数学物理
CiteScore
2.40
自引率
8.30%
发文量
111
审稿时长
3 months
期刊介绍: The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信