{"title":"卡洛吉罗-莫瑟-萨瑟兰型交织导数薛定谔系统","authors":"Ruoci Sun","doi":"10.1007/s11005-024-01815-x","DOIUrl":null,"url":null,"abstract":"<div><p>This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS) </p><div><div><span>$$\\begin{aligned} \\small i\\partial _t u + \\partial _x^2 u = \\pm u \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( |u|^2 \\right) , \\quad \\textrm{D}= -i\\partial _x, \\quad x \\in \\mathbb {R} \\quad \\textrm{or} \\quad x \\in \\mathbb {T}:= \\mathbb {R}/2 \\pi \\mathbb {Z}, \\end{aligned}$$</span></div></div><p>which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system, </p><div><div><span>$$\\begin{aligned} {\\left\\{ \\begin{array}{ll} i\\partial _t U + \\partial _x^2 U = - \\tfrac{1}{2} U \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( V^* U\\right) - \\tfrac{1}{2} V \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( U^* U\\right) ,\\\\ i\\partial _t V + \\partial _x^2 V = - \\tfrac{1}{2} V \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( U^* V\\right) - \\tfrac{1}{2} U \\left( \\textrm{D} + |\\textrm{D}| \\right) \\left( V^* V\\right) .\\\\ \\end{array}\\right. } \\end{aligned}$$</span></div></div><p>This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.</p></div>","PeriodicalId":685,"journal":{"name":"Letters in Mathematical Physics","volume":"114 3","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type\",\"authors\":\"Ruoci Sun\",\"doi\":\"10.1007/s11005-024-01815-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS) </p><div><div><span>$$\\\\begin{aligned} \\\\small i\\\\partial _t u + \\\\partial _x^2 u = \\\\pm u \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( |u|^2 \\\\right) , \\\\quad \\\\textrm{D}= -i\\\\partial _x, \\\\quad x \\\\in \\\\mathbb {R} \\\\quad \\\\textrm{or} \\\\quad x \\\\in \\\\mathbb {T}:= \\\\mathbb {R}/2 \\\\pi \\\\mathbb {Z}, \\\\end{aligned}$$</span></div></div><p>which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system, </p><div><div><span>$$\\\\begin{aligned} {\\\\left\\\\{ \\\\begin{array}{ll} i\\\\partial _t U + \\\\partial _x^2 U = - \\\\tfrac{1}{2} U \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( V^* U\\\\right) - \\\\tfrac{1}{2} V \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( U^* U\\\\right) ,\\\\\\\\ i\\\\partial _t V + \\\\partial _x^2 V = - \\\\tfrac{1}{2} V \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( U^* V\\\\right) - \\\\tfrac{1}{2} U \\\\left( \\\\textrm{D} + |\\\\textrm{D}| \\\\right) \\\\left( V^* V\\\\right) .\\\\\\\\ \\\\end{array}\\\\right. } \\\\end{aligned}$$</span></div></div><p>This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.</p></div>\",\"PeriodicalId\":685,\"journal\":{\"name\":\"Letters in Mathematical Physics\",\"volume\":\"114 3\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Mathematical Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11005-024-01815-x\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Mathematical Physics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s11005-024-01815-x","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0
摘要
本文致力于扩展聚焦/去聚焦卡洛吉罗-莫泽-萨瑟兰三次导数薛定谔方程(CMSdNLS) $$\begin{aligned}\mall i\partial _t u + \partial _x^2 u = \pm u \left( \textrm{D} + |\textrm{D}| \right) \left( |u|^2 \right) , \quad \textrm{D}= -i\partial _x, \quad x \in \mathbb {R} \quad \textrm{or}\quad x \in \mathbb {T}:= \mathbb {R}/2 \pi \mathbb {Z}, \end{aligned}$$最初由 Matsuno(Phys Lett A 278(1-2):53-58, 2000; Inverse Probl 18:1101-1125, 2002; J Phys Soc Jpn 71(6):1415-1418, 2002; Inverse Prob 20(2):437-445, 2004)、Abanov et al.(J Phys A 42(13):135201, 2009)、Gérard 和 Lenzmann (The Calogero-Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) 和 Badreddine (On the global well-posedness of the Calogero-Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero-Sutherland derivative nonlinear Schrödinger equation, Annales de l'Institut Henri Poincaré, Analyse Non Linéaire.01592),到两个矩阵值变量的系统,导致下面的交织系统,$$\begin{aligned}{\left\{ \begin{array}{ll} i\partial _t U + \partial _x^2 U = - \tfrac{1}{2}U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2}V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* U\right) ,\ i\partial _t V + \partial _x^2 V = - \tfrac{1}{2}V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2}U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* V\right) .\end{array}\right.}\end{aligned}$$这个系统具有拉克斯对结构,使得我们能够为一维环面和实线上的一般解建立一个明确的公式。因此,这个系统可以被视为线性薛定谔方程和 CMSdNLS方程的可积分扰动和扩展。
The intertwined derivative Schrödinger system of Calogero–Moser–Sutherland type
This paper is dedicated to extending the focusing/defocusing Calogero–Moser–Sutherland cubic derivative Schrödinger equations (CMSdNLS)
$$\begin{aligned} \small i\partial _t u + \partial _x^2 u = \pm u \left( \textrm{D} + |\textrm{D}| \right) \left( |u|^2 \right) , \quad \textrm{D}= -i\partial _x, \quad x \in \mathbb {R} \quad \textrm{or} \quad x \in \mathbb {T}:= \mathbb {R}/2 \pi \mathbb {Z}, \end{aligned}$$
which were initially introduced in Matsuno (Phys Lett A 278(1–2):53–58, 2000; Inverse Probl 18:1101–1125, 2002; J Phys Soc Jpn 71(6):1415–1418, 2002; Inverse Prob 20(2):437–445, 2004), Abanov et al. (J Phys A 42(13): 135201, 2009), Gérard and Lenzmann (The Calogero–Moser derivative nonlinear Schrödinger equation, Communications on Pure and Applied Mathematics. arXiv:2208.04105) and Badreddine (On the global well-posedness of the Calogero–Sutherland derivative nonlinear Schrödinger equation, Pure and Applied Analysis. arXiv:2303.01087; Traveling waves and finite gap potentials for the Calogero–Sutherland derivative nonlinear Schrödinger equation, Annales de l’Institut Henri Poincaré, Analyse Non Linéaire. arXiv:2307.01592), to a system of two matrix-valued variables, leading to the following intertwined system,
$$\begin{aligned} {\left\{ \begin{array}{ll} i\partial _t U + \partial _x^2 U = - \tfrac{1}{2} U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* U\right) - \tfrac{1}{2} V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* U\right) ,\\ i\partial _t V + \partial _x^2 V = - \tfrac{1}{2} V \left( \textrm{D} + |\textrm{D}| \right) \left( U^* V\right) - \tfrac{1}{2} U \left( \textrm{D} + |\textrm{D}| \right) \left( V^* V\right) .\\ \end{array}\right. } \end{aligned}$$
This system enjoys a Lax pair structure, enabling the establishment of an explicit formula for general solutions on both the 1-dimensional torus and the real line. Consequently, this system can be regarded as an integrable perturbation and extension of both the linear Schrödinger equation and the CMSdNLS equations.
期刊介绍:
The aim of Letters in Mathematical Physics is to attract the community''s attention on important and original developments in the area of mathematical physics and contemporary theoretical physics. The journal publishes letters and longer research articles, occasionally also articles containing topical reviews. We are committed to both fast publication and careful refereeing. In addition, the journal offers important contributions to modern mathematics in fields which have a potential physical application, and important developments in theoretical physics which have potential mathematical impact.