密集随机矩形中的博罗姆超图形成

Alexander R. Klotz
{"title":"密集随机矩形中的博罗姆超图形成","authors":"Alexander R. Klotz","doi":"arxiv-2405.20874","DOIUrl":null,"url":null,"abstract":"We develop a minimal system to study the stochastic formation of Borromean\nlinks within topologically entangled networks without requiring the use of knot\ninvariants. Borromean linkages may form in entangled solutions of open polymer\nchains or in Olympic gel systems such as kinetoplast DNA, but it is challenging\nto investigate this due to the difficulty of computing three-body link\ninvariants. Here, we investigate randomly oriented rectangles densely packed\nwithin a volume, and evaluate them for Hopf linking and Borromean link\nformation. We show that dense packings of rectangles can form Borromean\ntriplets and larger clusters, and that in high enough density the combination\nof Hopf and Borromean linking can create a percolating hypergraph through the\nnetwork. We present data for the percolation threshold of Borromean\nhypergraphs, and discuss implications for the existence of Borromean\nconnectivity within kinetoplast DNA.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borromean Hypergraph Formation in Dense Random Rectangles\",\"authors\":\"Alexander R. Klotz\",\"doi\":\"arxiv-2405.20874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a minimal system to study the stochastic formation of Borromean\\nlinks within topologically entangled networks without requiring the use of knot\\ninvariants. Borromean linkages may form in entangled solutions of open polymer\\nchains or in Olympic gel systems such as kinetoplast DNA, but it is challenging\\nto investigate this due to the difficulty of computing three-body link\\ninvariants. Here, we investigate randomly oriented rectangles densely packed\\nwithin a volume, and evaluate them for Hopf linking and Borromean link\\nformation. We show that dense packings of rectangles can form Borromean\\ntriplets and larger clusters, and that in high enough density the combination\\nof Hopf and Borromean linking can create a percolating hypergraph through the\\nnetwork. We present data for the percolation threshold of Borromean\\nhypergraphs, and discuss implications for the existence of Borromean\\nconnectivity within kinetoplast DNA.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们开发了一个最小系统来研究在拓扑纠缠网络中随机形成的波罗曼(Borromean)链接,而不需要使用节点变量。在开放聚合物链的纠缠溶液或奥林匹克凝胶系统(如动原 DNA)中可能会形成博罗梅因链接,但由于难以计算三体链接变量,研究这种情况具有挑战性。在这里,我们研究了在一个体积内密集堆积的随机取向矩形,并对它们进行了霍普夫链接和博罗曼链接变换评估。我们的研究表明,密集堆积的矩形可以形成 Borromeantriplets 和更大的簇,而且在足够高的密度下,Hopf 链接和 Borromean 链接的组合可以在网络中形成一个渗滤超图。我们提出了博罗梅斯超图的渗流阈值数据,并讨论了动粒 DNA 中存在博罗梅斯连通性的意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Borromean Hypergraph Formation in Dense Random Rectangles
We develop a minimal system to study the stochastic formation of Borromean links within topologically entangled networks without requiring the use of knot invariants. Borromean linkages may form in entangled solutions of open polymer chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging to investigate this due to the difficulty of computing three-body link invariants. Here, we investigate randomly oriented rectangles densely packed within a volume, and evaluate them for Hopf linking and Borromean link formation. We show that dense packings of rectangles can form Borromean triplets and larger clusters, and that in high enough density the combination of Hopf and Borromean linking can create a percolating hypergraph through the network. We present data for the percolation threshold of Borromean hypergraphs, and discuss implications for the existence of Borromean connectivity within kinetoplast DNA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信