{"title":"密集随机矩形中的博罗姆超图形成","authors":"Alexander R. Klotz","doi":"arxiv-2405.20874","DOIUrl":null,"url":null,"abstract":"We develop a minimal system to study the stochastic formation of Borromean\nlinks within topologically entangled networks without requiring the use of knot\ninvariants. Borromean linkages may form in entangled solutions of open polymer\nchains or in Olympic gel systems such as kinetoplast DNA, but it is challenging\nto investigate this due to the difficulty of computing three-body link\ninvariants. Here, we investigate randomly oriented rectangles densely packed\nwithin a volume, and evaluate them for Hopf linking and Borromean link\nformation. We show that dense packings of rectangles can form Borromean\ntriplets and larger clusters, and that in high enough density the combination\nof Hopf and Borromean linking can create a percolating hypergraph through the\nnetwork. We present data for the percolation threshold of Borromean\nhypergraphs, and discuss implications for the existence of Borromean\nconnectivity within kinetoplast DNA.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"75 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Borromean Hypergraph Formation in Dense Random Rectangles\",\"authors\":\"Alexander R. Klotz\",\"doi\":\"arxiv-2405.20874\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a minimal system to study the stochastic formation of Borromean\\nlinks within topologically entangled networks without requiring the use of knot\\ninvariants. Borromean linkages may form in entangled solutions of open polymer\\nchains or in Olympic gel systems such as kinetoplast DNA, but it is challenging\\nto investigate this due to the difficulty of computing three-body link\\ninvariants. Here, we investigate randomly oriented rectangles densely packed\\nwithin a volume, and evaluate them for Hopf linking and Borromean link\\nformation. We show that dense packings of rectangles can form Borromean\\ntriplets and larger clusters, and that in high enough density the combination\\nof Hopf and Borromean linking can create a percolating hypergraph through the\\nnetwork. We present data for the percolation threshold of Borromean\\nhypergraphs, and discuss implications for the existence of Borromean\\nconnectivity within kinetoplast DNA.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20874\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20874","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
我们开发了一个最小系统来研究在拓扑纠缠网络中随机形成的波罗曼(Borromean)链接,而不需要使用节点变量。在开放聚合物链的纠缠溶液或奥林匹克凝胶系统(如动原 DNA)中可能会形成博罗梅因链接,但由于难以计算三体链接变量,研究这种情况具有挑战性。在这里,我们研究了在一个体积内密集堆积的随机取向矩形,并对它们进行了霍普夫链接和博罗曼链接变换评估。我们的研究表明,密集堆积的矩形可以形成 Borromeantriplets 和更大的簇,而且在足够高的密度下,Hopf 链接和 Borromean 链接的组合可以在网络中形成一个渗滤超图。我们提出了博罗梅斯超图的渗流阈值数据,并讨论了动粒 DNA 中存在博罗梅斯连通性的意义。
Borromean Hypergraph Formation in Dense Random Rectangles
We develop a minimal system to study the stochastic formation of Borromean
links within topologically entangled networks without requiring the use of knot
invariants. Borromean linkages may form in entangled solutions of open polymer
chains or in Olympic gel systems such as kinetoplast DNA, but it is challenging
to investigate this due to the difficulty of computing three-body link
invariants. Here, we investigate randomly oriented rectangles densely packed
within a volume, and evaluate them for Hopf linking and Borromean link
formation. We show that dense packings of rectangles can form Borromean
triplets and larger clusters, and that in high enough density the combination
of Hopf and Borromean linking can create a percolating hypergraph through the
network. We present data for the percolation threshold of Borromean
hypergraphs, and discuss implications for the existence of Borromean
connectivity within kinetoplast DNA.