{"title":"利用最少活化剂和压力浇注法开发高强度土工聚合物:技术-环境-经济性能","authors":"Khuram Rashid, Fahad Masud","doi":"10.3151/jact.22.327","DOIUrl":null,"url":null,"abstract":"</p><p>This work is designed by coupling fly ash (FA) with dune sand (DS) for high-strength geopolymer activated in an alkaline environment under pressure-applied casting. Initially, the proportion of FA and DS is optimized with the least activator dosage to obtain higher than the compressive strength of 50 MPa. A uniaxial pressure is applied on a semi-dry mixture containing the least activators and immediately demolded, involving rapid production for the industrialization purpose of the paving blocks. The experimental study revealed that the FA-DS proportion of 1:1, with a liquid-to-solid ratio of 0.16, achieved a compressive strength of 54.4 MPa. Consequently, the coupling of DS provides an occupying effect and reduces the required activator quantity. The strength gain mechanism is discussed at the molecular level by analyzing Fourier-transform infrared. Finally, the technical performance of the strength and the density is evaluated on the real size 203 × 101 × 80 mm prism and compared with the commercially available conventional concrete blocks. Besides, the enviro-economic performance in terms of CO<sub>2</sub> emissions and the cost are analysed as well. It is concluded that the developed block is a more environmentally sustainable and economically viable alternative to conventional concrete blocks.</p>\n<p></p>","PeriodicalId":14868,"journal":{"name":"Journal of Advanced Concrete Technology","volume":null,"pages":null},"PeriodicalIF":1.6000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing High-Strength Geopolymer using Least Activator and Pressure-Applied Casting: Techno-Enviro-Economic Performance\",\"authors\":\"Khuram Rashid, Fahad Masud\",\"doi\":\"10.3151/jact.22.327\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"</p><p>This work is designed by coupling fly ash (FA) with dune sand (DS) for high-strength geopolymer activated in an alkaline environment under pressure-applied casting. Initially, the proportion of FA and DS is optimized with the least activator dosage to obtain higher than the compressive strength of 50 MPa. A uniaxial pressure is applied on a semi-dry mixture containing the least activators and immediately demolded, involving rapid production for the industrialization purpose of the paving blocks. The experimental study revealed that the FA-DS proportion of 1:1, with a liquid-to-solid ratio of 0.16, achieved a compressive strength of 54.4 MPa. Consequently, the coupling of DS provides an occupying effect and reduces the required activator quantity. The strength gain mechanism is discussed at the molecular level by analyzing Fourier-transform infrared. Finally, the technical performance of the strength and the density is evaluated on the real size 203 × 101 × 80 mm prism and compared with the commercially available conventional concrete blocks. Besides, the enviro-economic performance in terms of CO<sub>2</sub> emissions and the cost are analysed as well. It is concluded that the developed block is a more environmentally sustainable and economically viable alternative to conventional concrete blocks.</p>\\n<p></p>\",\"PeriodicalId\":14868,\"journal\":{\"name\":\"Journal of Advanced Concrete Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advanced Concrete Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.3151/jact.22.327\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advanced Concrete Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3151/jact.22.327","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Developing High-Strength Geopolymer using Least Activator and Pressure-Applied Casting: Techno-Enviro-Economic Performance
This work is designed by coupling fly ash (FA) with dune sand (DS) for high-strength geopolymer activated in an alkaline environment under pressure-applied casting. Initially, the proportion of FA and DS is optimized with the least activator dosage to obtain higher than the compressive strength of 50 MPa. A uniaxial pressure is applied on a semi-dry mixture containing the least activators and immediately demolded, involving rapid production for the industrialization purpose of the paving blocks. The experimental study revealed that the FA-DS proportion of 1:1, with a liquid-to-solid ratio of 0.16, achieved a compressive strength of 54.4 MPa. Consequently, the coupling of DS provides an occupying effect and reduces the required activator quantity. The strength gain mechanism is discussed at the molecular level by analyzing Fourier-transform infrared. Finally, the technical performance of the strength and the density is evaluated on the real size 203 × 101 × 80 mm prism and compared with the commercially available conventional concrete blocks. Besides, the enviro-economic performance in terms of CO2 emissions and the cost are analysed as well. It is concluded that the developed block is a more environmentally sustainable and economically viable alternative to conventional concrete blocks.
期刊介绍:
JACT is fast. Only 5 to 7 months from submission to publishing thanks to electronic file exchange between you, the reviewers and the editors.
JACT is high quality. Peer-reviewed by internationally renowned experts who return review comments to ensure the highest possible quality.
JACT is transparent. The status of your manuscript from submission to publishing can be viewed on our website, greatly reducing the frustration of being kept in the dark, possibly for over a year in the case of some journals.
JACT is cost-effective. Submission and subscription are free of charge . Full-text PDF files are available for the authors to open at their web sites.
Scope:
*Materials:
-Material properties
-Fresh concrete
-Hardened concrete
-High performance concrete
-Development of new materials
-Fiber reinforcement
*Maintenance and Rehabilitation:
-Durability and repair
-Strengthening/Rehabilitation
-LCC for concrete structures
-Environmant conscious materials
*Structures:
-Design and construction of RC and PC Structures
-Seismic design
-Safety against environmental disasters
-Failure mechanism and non-linear analysis/modeling
-Composite and mixed structures
*Other:
-Monitoring
-Aesthetics of concrete structures
-Other concrete related topics