具有局部分布阻尼的五次波方程的指数衰减

IF 1.3 2区 数学 Q1 MATHEMATICS
Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, André Vicente
{"title":"具有局部分布阻尼的五次波方程的指数衰减","authors":"Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, André Vicente","doi":"10.1007/s00208-024-02904-x","DOIUrl":null,"url":null,"abstract":"<p>We study the stabilization and the well-posedness of solutions of the quintic wave equation with locally distributed damping. The novelty of this paper is that we deal with the difficulty that the main equation does not have good nonlinear structure amenable to a direct proof of a priori bounds and a desirable observability inequality. It is well known that observability inequalities play a critical role in characterizing the long time behaviour of solutions of evolution equations, which is the main goal of this study. In order to address this, we approximate weak solutions for regular solutions for which it is possible to obtain a priori bounds and prove the essential observability inequality. The treatment of these approximate solutions is still a challenging task and requires the use of Strichartz estimates and some microlocal analysis tools such as microlocal defect measures.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":"30 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exponential decay for the quintic wave equation with locally distributed damping\",\"authors\":\"Marcelo M. Cavalcanti, Valéria N. Domingos Cavalcanti, André Vicente\",\"doi\":\"10.1007/s00208-024-02904-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the stabilization and the well-posedness of solutions of the quintic wave equation with locally distributed damping. The novelty of this paper is that we deal with the difficulty that the main equation does not have good nonlinear structure amenable to a direct proof of a priori bounds and a desirable observability inequality. It is well known that observability inequalities play a critical role in characterizing the long time behaviour of solutions of evolution equations, which is the main goal of this study. In order to address this, we approximate weak solutions for regular solutions for which it is possible to obtain a priori bounds and prove the essential observability inequality. The treatment of these approximate solutions is still a challenging task and requires the use of Strichartz estimates and some microlocal analysis tools such as microlocal defect measures.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":\"30 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02904-x\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02904-x","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有局部分布阻尼的五元波方程的稳定解和好求解性。本文的新颖之处在于我们解决了主方程不具备良好非线性结构的难题,即无法直接证明先验边界和理想的可观测性不等式。众所周知,可观测性不等式在描述演化方程解的长期行为特征方面起着至关重要的作用,而这正是本研究的主要目标。为了解决这个问题,我们将弱解近似为正则解,从而有可能获得先验边界,并证明基本的可观测性不等式。处理这些近似解仍然是一项具有挑战性的任务,需要使用斯特里查兹估计和一些微局域分析工具,如微局域缺陷度量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exponential decay for the quintic wave equation with locally distributed damping

We study the stabilization and the well-posedness of solutions of the quintic wave equation with locally distributed damping. The novelty of this paper is that we deal with the difficulty that the main equation does not have good nonlinear structure amenable to a direct proof of a priori bounds and a desirable observability inequality. It is well known that observability inequalities play a critical role in characterizing the long time behaviour of solutions of evolution equations, which is the main goal of this study. In order to address this, we approximate weak solutions for regular solutions for which it is possible to obtain a priori bounds and prove the essential observability inequality. The treatment of these approximate solutions is still a challenging task and requires the use of Strichartz estimates and some microlocal analysis tools such as microlocal defect measures.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信