{"title":"放射性铂-氧化铈-水混合物在振动里加通道中的化学动力学,受突然压力梯度的影响","authors":"Sanatan Das, Poly Karmakar, Tilak Kumar Pal, Soumitra Sarkar, Asgar Ali, Rabindra Nath Jana","doi":"10.1007/s10910-024-01625-5","DOIUrl":null,"url":null,"abstract":"<div><p>In the realm of renewable energy, platinum (Pt) nanoparticles are crucial components in fuel cells. They particularly excel in hydrogen fuel cells, where their role as catalysts significantly boosts the efficiency of electrochemical reactions. Cerium oxide nanoparticles are highly prized in engineering and industry for their exceptional catalytic abilities. They are particularly notable for their role in reducing vehicle emissions and facilitating the oxidation of carbon monoxide and hydrocarbons. Their oxygen storage capacity, crucial in regulating oxygen levels during catalytic reactions, is vital in automotive exhaust systems. Such an appealing area has led us to explore the dynamic behaviours of a specialized hybrid nanofluid- a mixture of radioactive platinum, cerium oxide, and water within a vertically extended vibrating Riga channel. This model is set under the cumulative consequences of sudden pressure gradient onset, electromagnetic forces, electromagnetic radiation, and chemical reactions. This physical model consists of a static right wall and a left wall that undergoes transverse vibrations. This flow scenario is mathematically described using time-dependent partial differential equations. A closed-form solution for the flow-regulating equations is obtained by harnessing the Laplace transform (LT) method. The study meticulously details the ascendancy of various critical parameters on the functions and quantities of the model, particularly for hybrid nanofluid (HNF) and nanofluid (NF), using graphical and tabular representations. Our findings manifest an expansion in the modified Hartmann number notably boosts the fluid velocity across the Riga channel. The fluid temperature in HNF is consistently lower in HNF compared to NF. The species concentration levels in HNF and NF lower with rising Schmidt numbers and chemical reaction parameters. A widened width of magnets and electrodes results in lowered shear stresses at the Riga wall in both HNF and NF. Furthermore, the rate of heat transfer (RHT) at the vibrating wall for HNF consistently shows higher values than for NF. These novel insights have far-reaching implications in various industrial and engineering applications, including the development of catalytic converters, the optimization of hydrogen fuel cells, the efficient oxidation of carbon monoxide and hydrocarbons, and advancements in materials processing techniques.</p></div>","PeriodicalId":648,"journal":{"name":"Journal of Mathematical Chemistry","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chemical dynamics in a radioactive platinum -cerium oxide-water mixture within a vibrating Riga channel subject to sudden pressure gradient onset\",\"authors\":\"Sanatan Das, Poly Karmakar, Tilak Kumar Pal, Soumitra Sarkar, Asgar Ali, Rabindra Nath Jana\",\"doi\":\"10.1007/s10910-024-01625-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In the realm of renewable energy, platinum (Pt) nanoparticles are crucial components in fuel cells. They particularly excel in hydrogen fuel cells, where their role as catalysts significantly boosts the efficiency of electrochemical reactions. Cerium oxide nanoparticles are highly prized in engineering and industry for their exceptional catalytic abilities. They are particularly notable for their role in reducing vehicle emissions and facilitating the oxidation of carbon monoxide and hydrocarbons. Their oxygen storage capacity, crucial in regulating oxygen levels during catalytic reactions, is vital in automotive exhaust systems. Such an appealing area has led us to explore the dynamic behaviours of a specialized hybrid nanofluid- a mixture of radioactive platinum, cerium oxide, and water within a vertically extended vibrating Riga channel. This model is set under the cumulative consequences of sudden pressure gradient onset, electromagnetic forces, electromagnetic radiation, and chemical reactions. This physical model consists of a static right wall and a left wall that undergoes transverse vibrations. This flow scenario is mathematically described using time-dependent partial differential equations. A closed-form solution for the flow-regulating equations is obtained by harnessing the Laplace transform (LT) method. The study meticulously details the ascendancy of various critical parameters on the functions and quantities of the model, particularly for hybrid nanofluid (HNF) and nanofluid (NF), using graphical and tabular representations. Our findings manifest an expansion in the modified Hartmann number notably boosts the fluid velocity across the Riga channel. The fluid temperature in HNF is consistently lower in HNF compared to NF. The species concentration levels in HNF and NF lower with rising Schmidt numbers and chemical reaction parameters. A widened width of magnets and electrodes results in lowered shear stresses at the Riga wall in both HNF and NF. Furthermore, the rate of heat transfer (RHT) at the vibrating wall for HNF consistently shows higher values than for NF. These novel insights have far-reaching implications in various industrial and engineering applications, including the development of catalytic converters, the optimization of hydrogen fuel cells, the efficient oxidation of carbon monoxide and hydrocarbons, and advancements in materials processing techniques.</p></div>\",\"PeriodicalId\":648,\"journal\":{\"name\":\"Journal of Mathematical Chemistry\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mathematical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10910-024-01625-5\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mathematical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10910-024-01625-5","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Chemical dynamics in a radioactive platinum -cerium oxide-water mixture within a vibrating Riga channel subject to sudden pressure gradient onset
In the realm of renewable energy, platinum (Pt) nanoparticles are crucial components in fuel cells. They particularly excel in hydrogen fuel cells, where their role as catalysts significantly boosts the efficiency of electrochemical reactions. Cerium oxide nanoparticles are highly prized in engineering and industry for their exceptional catalytic abilities. They are particularly notable for their role in reducing vehicle emissions and facilitating the oxidation of carbon monoxide and hydrocarbons. Their oxygen storage capacity, crucial in regulating oxygen levels during catalytic reactions, is vital in automotive exhaust systems. Such an appealing area has led us to explore the dynamic behaviours of a specialized hybrid nanofluid- a mixture of radioactive platinum, cerium oxide, and water within a vertically extended vibrating Riga channel. This model is set under the cumulative consequences of sudden pressure gradient onset, electromagnetic forces, electromagnetic radiation, and chemical reactions. This physical model consists of a static right wall and a left wall that undergoes transverse vibrations. This flow scenario is mathematically described using time-dependent partial differential equations. A closed-form solution for the flow-regulating equations is obtained by harnessing the Laplace transform (LT) method. The study meticulously details the ascendancy of various critical parameters on the functions and quantities of the model, particularly for hybrid nanofluid (HNF) and nanofluid (NF), using graphical and tabular representations. Our findings manifest an expansion in the modified Hartmann number notably boosts the fluid velocity across the Riga channel. The fluid temperature in HNF is consistently lower in HNF compared to NF. The species concentration levels in HNF and NF lower with rising Schmidt numbers and chemical reaction parameters. A widened width of magnets and electrodes results in lowered shear stresses at the Riga wall in both HNF and NF. Furthermore, the rate of heat transfer (RHT) at the vibrating wall for HNF consistently shows higher values than for NF. These novel insights have far-reaching implications in various industrial and engineering applications, including the development of catalytic converters, the optimization of hydrogen fuel cells, the efficient oxidation of carbon monoxide and hydrocarbons, and advancements in materials processing techniques.
期刊介绍:
The Journal of Mathematical Chemistry (JOMC) publishes original, chemically important mathematical results which use non-routine mathematical methodologies often unfamiliar to the usual audience of mainstream experimental and theoretical chemistry journals. Furthermore JOMC publishes papers on novel applications of more familiar mathematical techniques and analyses of chemical problems which indicate the need for new mathematical approaches.
Mathematical chemistry is a truly interdisciplinary subject, a field of rapidly growing importance. As chemistry becomes more and more amenable to mathematically rigorous study, it is likely that chemistry will also become an alert and demanding consumer of new mathematical results. The level of complexity of chemical problems is often very high, and modeling molecular behaviour and chemical reactions does require new mathematical approaches. Chemistry is witnessing an important shift in emphasis: simplistic models are no longer satisfactory, and more detailed mathematical understanding of complex chemical properties and phenomena are required. From theoretical chemistry and quantum chemistry to applied fields such as molecular modeling, drug design, molecular engineering, and the development of supramolecular structures, mathematical chemistry is an important discipline providing both explanations and predictions. JOMC has an important role in advancing chemistry to an era of detailed understanding of molecules and reactions.