广义绍德理论及其在退化/星状抛物方程中的应用

IF 1.3 2区 数学 Q1 MATHEMATICS
Takwon Kim, Ki-Ahm Lee, Hyungsung Yun
{"title":"广义绍德理论及其在退化/星状抛物方程中的应用","authors":"Takwon Kim, Ki-Ahm Lee, Hyungsung Yun","doi":"10.1007/s00208-024-02898-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we study generalized Schauder theory for the degenerate/singular parabolic equations of the form </p><span>$$\\begin{aligned} u_t = a^{i'j'}u_{i'j'} + 2 x_n^{\\gamma /2} a^{i'n} u_{i'n} + x_n^{\\gamma } a^{nn} u_{nn} + b^{i'} u_{i'} + x_n^{\\gamma /2} b^n u_{n} + c u + f \\quad (\\gamma \\le 1). \\end{aligned}$$</span><p>When the equation above is singular, it can be derived from Monge–Ampère equations by using the partial Legendre transform. Also, we study the fractional version of Taylor expansion for the solution <i>u</i>, which is called <i>s</i>-polynomial. To prove <span>\\(C_s^{2+\\alpha }\\)</span>-regularity and higher regularity of the solution <i>u</i>, we establish generalized Schauder theory which approximates coefficients of the operator with <i>s</i>-polynomials rather than constants. The generalized Schauder theory not only recovers the proof for uniformly parabolic equations but is also applicable to other operators that are difficult to apply the bootstrap argument to obtain higher regularity.</p>","PeriodicalId":18304,"journal":{"name":"Mathematische Annalen","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generalized Schauder theory and its application to degenerate/singular parabolic equations\",\"authors\":\"Takwon Kim, Ki-Ahm Lee, Hyungsung Yun\",\"doi\":\"10.1007/s00208-024-02898-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we study generalized Schauder theory for the degenerate/singular parabolic equations of the form </p><span>$$\\\\begin{aligned} u_t = a^{i'j'}u_{i'j'} + 2 x_n^{\\\\gamma /2} a^{i'n} u_{i'n} + x_n^{\\\\gamma } a^{nn} u_{nn} + b^{i'} u_{i'} + x_n^{\\\\gamma /2} b^n u_{n} + c u + f \\\\quad (\\\\gamma \\\\le 1). \\\\end{aligned}$$</span><p>When the equation above is singular, it can be derived from Monge–Ampère equations by using the partial Legendre transform. Also, we study the fractional version of Taylor expansion for the solution <i>u</i>, which is called <i>s</i>-polynomial. To prove <span>\\\\(C_s^{2+\\\\alpha }\\\\)</span>-regularity and higher regularity of the solution <i>u</i>, we establish generalized Schauder theory which approximates coefficients of the operator with <i>s</i>-polynomials rather than constants. The generalized Schauder theory not only recovers the proof for uniformly parabolic equations but is also applicable to other operators that are difficult to apply the bootstrap argument to obtain higher regularity.</p>\",\"PeriodicalId\":18304,\"journal\":{\"name\":\"Mathematische Annalen\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Annalen\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00208-024-02898-6\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Annalen","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00208-024-02898-6","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了形式为 $$\begin{aligned} u_t = a^{i'j'}u_{i'j'} 的退化/奇异抛物方程的广义绍德理论。+ 2 x_n^\{gamma /2} a^{i'n} u_{i'n}+ x_n^{\gamma } a^{nn} u_{nn}+ b^{i'} u_{i'}+ x_n^{gamma /2} b^n u_{n}+ c u + f \quad (\gamma \le 1).\end{aligned}$$当上面的方程是奇异方程时,它可以通过部分 Legendre 变换从 Monge-Ampère 方程中导出。此外,我们还研究了解 u 的分数版泰勒展开,即 s 多项式。为了证明解 u 的 \(C_s^{2+\alpha }\)-regularity 和更高的正则性,我们建立了广义的 Schauder 理论,该理论用 s-polynomial 而不是常数来逼近算子的系数。广义绍德理论不仅恢复了均匀抛物方程的证明,而且适用于其他难以应用引导论证获得高正则性的算子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Generalized Schauder theory and its application to degenerate/singular parabolic equations

Generalized Schauder theory and its application to degenerate/singular parabolic equations

In this paper, we study generalized Schauder theory for the degenerate/singular parabolic equations of the form

$$\begin{aligned} u_t = a^{i'j'}u_{i'j'} + 2 x_n^{\gamma /2} a^{i'n} u_{i'n} + x_n^{\gamma } a^{nn} u_{nn} + b^{i'} u_{i'} + x_n^{\gamma /2} b^n u_{n} + c u + f \quad (\gamma \le 1). \end{aligned}$$

When the equation above is singular, it can be derived from Monge–Ampère equations by using the partial Legendre transform. Also, we study the fractional version of Taylor expansion for the solution u, which is called s-polynomial. To prove \(C_s^{2+\alpha }\)-regularity and higher regularity of the solution u, we establish generalized Schauder theory which approximates coefficients of the operator with s-polynomials rather than constants. The generalized Schauder theory not only recovers the proof for uniformly parabolic equations but is also applicable to other operators that are difficult to apply the bootstrap argument to obtain higher regularity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Mathematische Annalen
Mathematische Annalen 数学-数学
CiteScore
2.90
自引率
7.10%
发文量
181
审稿时长
4-8 weeks
期刊介绍: Begründet 1868 durch Alfred Clebsch und Carl Neumann. Fortgeführt durch Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguignon, Wolfgang Lück und Nigel Hitchin. The journal Mathematische Annalen was founded in 1868 by Alfred Clebsch and Carl Neumann. It was continued by Felix Klein, David Hilbert, Otto Blumenthal, Erich Hecke, Heinrich Behnke, Hans Grauert, Heinz Bauer, Herbert Amann, Jean-Pierre Bourguigon, Wolfgang Lück and Nigel Hitchin. Since 1868 the name Mathematische Annalen stands for a long tradition and high quality in the publication of mathematical research articles. Mathematische Annalen is designed not as a specialized journal but covers a wide spectrum of modern mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信