图形及其维托里斯-里普斯复合物具有相同的伪拓扑弱同调类型

Jonathan Treviño-Marroquín
{"title":"图形及其维托里斯-里普斯复合物具有相同的伪拓扑弱同调类型","authors":"Jonathan Treviño-Marroquín","doi":"arxiv-2406.00149","DOIUrl":null,"url":null,"abstract":"In this document, we propose a bridge between the graphs and the geometric\nrealizations of their Vietoris Rips complexes, i.e. Graphs, with their\ncanonical \\v{C}ech closure structure, have the same homotopy type that the\nrealization of their Vietoris Rips complex.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Graphs and Their Vietoris-Rips Complexes Have the Same Pseudotopological Weak Homotopy Type\",\"authors\":\"Jonathan Treviño-Marroquín\",\"doi\":\"arxiv-2406.00149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this document, we propose a bridge between the graphs and the geometric\\nrealizations of their Vietoris Rips complexes, i.e. Graphs, with their\\ncanonical \\\\v{C}ech closure structure, have the same homotopy type that the\\nrealization of their Vietoris Rips complex.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00149\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出在图和其维特里普复数的几何实现之间架起一座桥梁,也就是说,具有典型 \v{C}ech 闭合结构的图与其维特里普复数的几何实现具有相同的同调类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Graphs and Their Vietoris-Rips Complexes Have the Same Pseudotopological Weak Homotopy Type
In this document, we propose a bridge between the graphs and the geometric realizations of their Vietoris Rips complexes, i.e. Graphs, with their canonical \v{C}ech closure structure, have the same homotopy type that the realization of their Vietoris Rips complex.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信