通过化学气相沉积促进电纺弹性纳米纤维表面功能化,增强神经细胞粘附性和排列性

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yerim Jang, Soonjong Roh, Younghak Cho, Youngmee Jung, Kangwon Lee, Nakwon Choi, Jin Yoo, Hyejeong Seong
{"title":"通过化学气相沉积促进电纺弹性纳米纤维表面功能化,增强神经细胞粘附性和排列性","authors":"Yerim Jang,&nbsp;Soonjong Roh,&nbsp;Younghak Cho,&nbsp;Youngmee Jung,&nbsp;Kangwon Lee,&nbsp;Nakwon Choi,&nbsp;Jin Yoo,&nbsp;Hyejeong Seong","doi":"10.1007/s42765-024-00438-0","DOIUrl":null,"url":null,"abstract":"<div><p>An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-<i>co</i>-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1583 - 1595"},"PeriodicalIF":17.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment\",\"authors\":\"Yerim Jang,&nbsp;Soonjong Roh,&nbsp;Younghak Cho,&nbsp;Youngmee Jung,&nbsp;Kangwon Lee,&nbsp;Nakwon Choi,&nbsp;Jin Yoo,&nbsp;Hyejeong Seong\",\"doi\":\"10.1007/s42765-024-00438-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-<i>co</i>-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 5\",\"pages\":\"1583 - 1595\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00438-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00438-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种用于生物医学应用的电纺聚(l-乳酸-co-ε-己内酯)(PLCL)纳米纤维表面功能化的先进方法。利用引发化学气相沉积(iCVD)技术,在 PLCL 纳米纤维上涂覆了一层含有聚(五氟苯基甲基丙烯酸酯)(PFMA)和二乙烯基苯(DVB)的共聚物 p(PFMA-co-DVB)涂层。这种涂层有助于将生物分子有效固定在 PLCL 纳米纤维表面,从而可以通过调节单体流速来精确调整聚合物成分。免疫荧光强度分析证实,由此产生的共聚物能更有效地固定 IgG。用不同神经细胞类型进行的体外研究表明,层粘连蛋白包覆的 iCVD 功能化 PLCL 纳米纤维保持了其固有的生物相容性,同时显著增强了细胞粘附性。利用 PLCL 纳米纤维的弹性特性,通过控制纳米纤维的排列,可以成功地操纵细胞的伸长,这一点已通过扫描电子显微镜和免疫荧光图像取向量化得到证实。这些发现凸显了 iCVD 改性 PLCL 纳米纤维作为神经组织工程和各种生物医学应用的多功能平台的潜力,可对生物材料表面进行有价值的改性,从而增强细胞的相互作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment

Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment

An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-co-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信