{"title":"通过化学气相沉积促进电纺弹性纳米纤维表面功能化,增强神经细胞粘附性和排列性","authors":"Yerim Jang, Soonjong Roh, Younghak Cho, Youngmee Jung, Kangwon Lee, Nakwon Choi, Jin Yoo, Hyejeong Seong","doi":"10.1007/s42765-024-00438-0","DOIUrl":null,"url":null,"abstract":"<div><p>An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-<i>co</i>-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 5","pages":"1583 - 1595"},"PeriodicalIF":17.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment\",\"authors\":\"Yerim Jang, Soonjong Roh, Younghak Cho, Youngmee Jung, Kangwon Lee, Nakwon Choi, Jin Yoo, Hyejeong Seong\",\"doi\":\"10.1007/s42765-024-00438-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-<i>co</i>-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 5\",\"pages\":\"1583 - 1595\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00438-0\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00438-0","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Facile Surface Functionalization of Electrospun Elastic Nanofibers Via Initiated Chemical Vapor Deposition for Enhanced Neural Cell Adhesion and Alignment
An advanced approach for functionalizing the surfaces of electrospun poly(l-lactide-co-ε-caprolactone) (PLCL) nanofibers for biomedical applications is presented here. Using initiated chemical vapor deposition (iCVD), a coating of the copolymer p(PFMA-co-DVB) containing poly(pentafluorophenyl methacrylate) (PFMA) and divinylbenzene (DVB) was applied to the PLCL nanofibers. This coating facilitated efficient immobilization of the biomolecules on the PLCL nanofiber surfaces, allowing precise adjustments to the polymer composition through modulation of the monomer flow rates. The resulting copolymer exhibited superior efficiency for immobilizing IgG, as confirmed by immunofluorescence intensity analysis. In vitro studies conducted with different neural cell types demonstrated that the laminin-coated iCVD-functionalized PLCL nanofibers maintained their inherent biocompatibility while significantly enhancing cell adhesion. By exploiting the elastic nature of the PLCL nanofibers, cell elongation could be successfully manipulated by controlling the nanofiber alignment, as demonstrated by scanning electron microscopy and quantification of the immunofluorescence image orientation. These findings highlight the potential of iCVD-modified PLCL nanofibers as versatile platforms for neural tissue engineering and various biomedical applications, allowing valuable biomaterial surface modifications for enhanced cellular interactions.
期刊介绍:
Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al.
Publishing on fiber or fiber-related materials, technology, engineering and application.