类似亨德森区间图

Jernej Činč
{"title":"类似亨德森区间图","authors":"Jernej Činč","doi":"arxiv-2405.20533","DOIUrl":null,"url":null,"abstract":"In this paper we study interval maps with zero topological entropy that are\ncrooked; i.e. whose inverse limit is the pseudo-arc. We show that there are\nuncountably many pairwise non-conjugate zero entropy crooked interval maps with\ndifferent sets of fixed points. We also show that there are uncountably many\ncrooked maps that are pairwise non-conjugate and have exactly two fixed points.\nFurthermore, we provide a characterization of crooked interval maps that are\nunder (above) the diagonal.","PeriodicalId":501314,"journal":{"name":"arXiv - MATH - General Topology","volume":"194 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Henderson-like interval maps\",\"authors\":\"Jernej Činč\",\"doi\":\"arxiv-2405.20533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper we study interval maps with zero topological entropy that are\\ncrooked; i.e. whose inverse limit is the pseudo-arc. We show that there are\\nuncountably many pairwise non-conjugate zero entropy crooked interval maps with\\ndifferent sets of fixed points. We also show that there are uncountably many\\ncrooked maps that are pairwise non-conjugate and have exactly two fixed points.\\nFurthermore, we provide a characterization of crooked interval maps that are\\nunder (above) the diagonal.\",\"PeriodicalId\":501314,\"journal\":{\"name\":\"arXiv - MATH - General Topology\",\"volume\":\"194 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - General Topology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20533\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - General Topology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20533","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了拓扑熵为零的弯曲区间映射,即其逆极限为伪弧。我们证明,有不可计数的成对非共轭的零熵弯曲区间映射,它们的定点集合各不相同。此外,我们还给出了对角线之下(之上)的弯曲区间映射的特征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Henderson-like interval maps
In this paper we study interval maps with zero topological entropy that are crooked; i.e. whose inverse limit is the pseudo-arc. We show that there are uncountably many pairwise non-conjugate zero entropy crooked interval maps with different sets of fixed points. We also show that there are uncountably many crooked maps that are pairwise non-conjugate and have exactly two fixed points. Furthermore, we provide a characterization of crooked interval maps that are under (above) the diagonal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信