平面上的欧氏最大匹配--局部到全局

Ahmad Biniaz, Anil Maheshwari, Michiel Smid
{"title":"平面上的欧氏最大匹配--局部到全局","authors":"Ahmad Biniaz, Anil Maheshwari, Michiel Smid","doi":"arxiv-2405.20424","DOIUrl":null,"url":null,"abstract":"Let $M$ be a perfect matching on a set of points in the plane where every\nedge is a line segment between two points. We say that $M$ is globally maximum\nif it is a maximum-length matching on all points. We say that $M$ is $k$-local\nmaximum if for any subset $M'=\\{a_1b_1,\\dots,a_kb_k\\}$ of $k$ edges of $M$ it\nholds that $M'$ is a maximum-length matching on points\n$\\{a_1,b_1,\\dots,a_k,b_k\\}$. We show that local maximum matchings are good\napproximations of global ones. Let $\\mu_k$ be the infimum ratio of the length of any $k$-local maximum\nmatching to the length of any global maximum matching, over all finite point\nsets in the Euclidean plane. It is known that $\\mu_k\\geqslant \\frac{k-1}{k}$\nfor any $k\\geqslant 2$. We show the following improved bounds for\n$k\\in\\{2,3\\}$: $\\sqrt{3/7}\\leqslant\\mu_2< 0.93 $ and $\\sqrt{3}/2\\leqslant\\mu_3<\n0.98$. We also show that every pairwise crossing matching is unique and it is\nglobally maximum. Towards our proof of the lower bound for $\\mu_2$ we show the following result\nwhich is of independent interest: If we increase the radii of pairwise\nintersecting disks by factor $2/\\sqrt{3}$, then the resulting disks have a\ncommon intersection.","PeriodicalId":501216,"journal":{"name":"arXiv - CS - Discrete Mathematics","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Euclidean Maximum Matchings in the Plane---Local to Global\",\"authors\":\"Ahmad Biniaz, Anil Maheshwari, Michiel Smid\",\"doi\":\"arxiv-2405.20424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $M$ be a perfect matching on a set of points in the plane where every\\nedge is a line segment between two points. We say that $M$ is globally maximum\\nif it is a maximum-length matching on all points. We say that $M$ is $k$-local\\nmaximum if for any subset $M'=\\\\{a_1b_1,\\\\dots,a_kb_k\\\\}$ of $k$ edges of $M$ it\\nholds that $M'$ is a maximum-length matching on points\\n$\\\\{a_1,b_1,\\\\dots,a_k,b_k\\\\}$. We show that local maximum matchings are good\\napproximations of global ones. Let $\\\\mu_k$ be the infimum ratio of the length of any $k$-local maximum\\nmatching to the length of any global maximum matching, over all finite point\\nsets in the Euclidean plane. It is known that $\\\\mu_k\\\\geqslant \\\\frac{k-1}{k}$\\nfor any $k\\\\geqslant 2$. We show the following improved bounds for\\n$k\\\\in\\\\{2,3\\\\}$: $\\\\sqrt{3/7}\\\\leqslant\\\\mu_2< 0.93 $ and $\\\\sqrt{3}/2\\\\leqslant\\\\mu_3<\\n0.98$. We also show that every pairwise crossing matching is unique and it is\\nglobally maximum. Towards our proof of the lower bound for $\\\\mu_2$ we show the following result\\nwhich is of independent interest: If we increase the radii of pairwise\\nintersecting disks by factor $2/\\\\sqrt{3}$, then the resulting disks have a\\ncommon intersection.\",\"PeriodicalId\":501216,\"journal\":{\"name\":\"arXiv - CS - Discrete Mathematics\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Discrete Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20424\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Discrete Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20424","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

让 $M$ 是平面上一组点的完美匹配,其中每个边都是两点之间的线段。如果 $M$ 在所有点上都是长度最大的匹配,我们就说 $M$ 是全局最大匹配。如果对于 $M$ 的 $k$ 边的任何子集 $M'=\{a_1b_1,\dots,a_kb_k\}$ 认为 $M'$ 在点 $\{a_1,b_1,\dots,a_k,b_k\}$ 上是最大长度匹配,我们就说 $M$ 是 $k$ 局部最大匹配。我们证明局部最大匹配是全局最大匹配的良好近似。让 $\mu_k$ 成为欧几里得平面上所有有限点集的任意 $k$ 局部最大匹配长度与任意全局最大匹配长度的最小比值。已知对于任意 $k\geqslant 2$,$\mu_k\geqslant \frac{k-1}{k}$。我们为$k\in\{2,3\}$展示了以下改进的边界:$\sqrt{3/7}\leqslant\mu_2< 0.93$和$\sqrt{3}/2\leqslant\mu_3<0.98$。我们还证明了每一对交叉匹配都是唯一的,并且是全局最大的。为了证明 $\mu_2$ 的下界,我们展示了以下结果,这也是我们感兴趣的地方:如果我们用系数 $2/ (sqrt{3}$ 来增加成对相交磁盘的半径,那么得到的磁盘就有共同的交点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Euclidean Maximum Matchings in the Plane---Local to Global
Let $M$ be a perfect matching on a set of points in the plane where every edge is a line segment between two points. We say that $M$ is globally maximum if it is a maximum-length matching on all points. We say that $M$ is $k$-local maximum if for any subset $M'=\{a_1b_1,\dots,a_kb_k\}$ of $k$ edges of $M$ it holds that $M'$ is a maximum-length matching on points $\{a_1,b_1,\dots,a_k,b_k\}$. We show that local maximum matchings are good approximations of global ones. Let $\mu_k$ be the infimum ratio of the length of any $k$-local maximum matching to the length of any global maximum matching, over all finite point sets in the Euclidean plane. It is known that $\mu_k\geqslant \frac{k-1}{k}$ for any $k\geqslant 2$. We show the following improved bounds for $k\in\{2,3\}$: $\sqrt{3/7}\leqslant\mu_2< 0.93 $ and $\sqrt{3}/2\leqslant\mu_3< 0.98$. We also show that every pairwise crossing matching is unique and it is globally maximum. Towards our proof of the lower bound for $\mu_2$ we show the following result which is of independent interest: If we increase the radii of pairwise intersecting disks by factor $2/\sqrt{3}$, then the resulting disks have a common intersection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信