平面图同时嵌入的对数约束

Pub Date : 2024-06-04 DOI:10.1007/s00454-024-00665-7
Raphael Steiner
{"title":"平面图同时嵌入的对数约束","authors":"Raphael Steiner","doi":"10.1007/s00454-024-00665-7","DOIUrl":null,"url":null,"abstract":"<p>A set <span>\\({\\mathcal {G}}\\)</span> of planar graphs on the same number <i>n</i> of vertices is called <i>simultaneously embeddable</i> if there exists a set <i>P</i> of <i>n</i> points in the plane such that every graph <span>\\(G \\in {\\mathcal {G}}\\)</span> admits a (crossing-free) straight-line embedding with vertices placed at points of <i>P</i>. A <i>conflict collection</i> is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there exists a conflict collection of size 2. While this remains widely open, we give a short proof that for sufficiently large <i>n</i> there exists a conflict collection consisting of at most <span>\\((3+o(1))\\log _2(n)\\)</span> planar graphs on <i>n</i> vertices. This constitutes a double-exponential improvement over the previously best known bound of <span>\\(O(n\\cdot 4^{n/11})\\)</span> for the same problem by Goenka et al. (Graphs Combin 39:100, 2023). Using our method we also provide a computer-free proof that for every integer <span>\\(n\\in [107,193]\\)</span> there exists a conflict collection of 30 planar <i>n</i>-vertex graphs, improving upon the previously smallest known conflict collection consisting of 49 graphs of order 11, which was found using heavy computer assistance. While the construction by Goenka et al. was explicit, our construction of a conflict collection of size <span>\\(O(\\log n)\\)</span> is based on the probabilistic method and is thus only implicit. Motivated by this, for every large enough <i>n</i> we give a different, fully explicit construction of a collection of less than <span>\\(n^6\\)</span> planar <i>n</i>-vertex graphs with no simultaneous embedding.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Logarithmic Bound for Simultaneous Embeddings of Planar Graphs\",\"authors\":\"Raphael Steiner\",\"doi\":\"10.1007/s00454-024-00665-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A set <span>\\\\({\\\\mathcal {G}}\\\\)</span> of planar graphs on the same number <i>n</i> of vertices is called <i>simultaneously embeddable</i> if there exists a set <i>P</i> of <i>n</i> points in the plane such that every graph <span>\\\\(G \\\\in {\\\\mathcal {G}}\\\\)</span> admits a (crossing-free) straight-line embedding with vertices placed at points of <i>P</i>. A <i>conflict collection</i> is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there exists a conflict collection of size 2. While this remains widely open, we give a short proof that for sufficiently large <i>n</i> there exists a conflict collection consisting of at most <span>\\\\((3+o(1))\\\\log _2(n)\\\\)</span> planar graphs on <i>n</i> vertices. This constitutes a double-exponential improvement over the previously best known bound of <span>\\\\(O(n\\\\cdot 4^{n/11})\\\\)</span> for the same problem by Goenka et al. (Graphs Combin 39:100, 2023). Using our method we also provide a computer-free proof that for every integer <span>\\\\(n\\\\in [107,193]\\\\)</span> there exists a conflict collection of 30 planar <i>n</i>-vertex graphs, improving upon the previously smallest known conflict collection consisting of 49 graphs of order 11, which was found using heavy computer assistance. While the construction by Goenka et al. was explicit, our construction of a conflict collection of size <span>\\\\(O(\\\\log n)\\\\)</span> is based on the probabilistic method and is thus only implicit. Motivated by this, for every large enough <i>n</i> we give a different, fully explicit construction of a collection of less than <span>\\\\(n^6\\\\)</span> planar <i>n</i>-vertex graphs with no simultaneous embedding.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00665-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00665-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果在平面上存在一个由 n 个点组成的集合 P,使得每个图(G 在{/mathcal {G}}中)的顶点都位于 P 的点上,并且每个图(G 在{/mathcal {G}}中)都有一个(无交叉的)直线嵌入,那么我们就称这个集合({/mathcal {G}})为可同时嵌入集合。2007 年,Brass、Cenek、Duncan、Efrat、Erten、Ismailescu、Kobourov、Lubiw 和 Mitchell 提出了一个著名的开放性问题:是否存在大小为 2 的冲突集合。虽然这个问题仍然悬而未决,但我们给出了一个简短的证明:对于足够大的 n,存在一个冲突集合,它至多由 n 个顶点上的\((3+o(1))\log _2(n)\)个平面图组成。这与 Goenka 等人针对同一问题之前已知的 \(O(n\cdot 4^{n/11})\) 约束(Graphs Combin 39:100, 2023)相比,是双指数级的改进。使用我们的方法,我们还提供了一个无需计算机的证明,即对于 [107,193]\ 中的每一个整数 \(n\in [107,193]\) 都存在一个由 30 个平面 n 顶点图组成的冲突集合,这改进了之前已知的由 49 个 11 阶图组成的最小冲突集合,该冲突集合是在大量计算机辅助下找到的。Goenka 等人的构造是显式的,而我们对大小为 \(O(\log n)\)的冲突集合的构造是基于概率方法的,因此只是隐式的。受此启发,对于每一个足够大的 n,我们都给出了一个不同的、完全显式的、没有同时嵌入的小于 \(n^6\) 的平面 n 顶点图集合的构造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A Logarithmic Bound for Simultaneous Embeddings of Planar Graphs

分享
查看原文
A Logarithmic Bound for Simultaneous Embeddings of Planar Graphs

A set \({\mathcal {G}}\) of planar graphs on the same number n of vertices is called simultaneously embeddable if there exists a set P of n points in the plane such that every graph \(G \in {\mathcal {G}}\) admits a (crossing-free) straight-line embedding with vertices placed at points of P. A conflict collection is a set of planar graphs of the same order with no simultaneous embedding. A well-known open problem from 2007 posed by Brass, Cenek, Duncan, Efrat, Erten, Ismailescu, Kobourov, Lubiw and Mitchell, asks whether there exists a conflict collection of size 2. While this remains widely open, we give a short proof that for sufficiently large n there exists a conflict collection consisting of at most \((3+o(1))\log _2(n)\) planar graphs on n vertices. This constitutes a double-exponential improvement over the previously best known bound of \(O(n\cdot 4^{n/11})\) for the same problem by Goenka et al. (Graphs Combin 39:100, 2023). Using our method we also provide a computer-free proof that for every integer \(n\in [107,193]\) there exists a conflict collection of 30 planar n-vertex graphs, improving upon the previously smallest known conflict collection consisting of 49 graphs of order 11, which was found using heavy computer assistance. While the construction by Goenka et al. was explicit, our construction of a conflict collection of size \(O(\log n)\) is based on the probabilistic method and is thus only implicit. Motivated by this, for every large enough n we give a different, fully explicit construction of a collection of less than \(n^6\) planar n-vertex graphs with no simultaneous embedding.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信