沃罗诺伊路径和景观的平均失真和预期失真

Pub Date : 2024-06-04 DOI:10.1007/s00454-024-00660-y
Herbert Edelsbrunner, Anton Nikitenko
{"title":"沃罗诺伊路径和景观的平均失真和预期失真","authors":"Herbert Edelsbrunner, Anton Nikitenko","doi":"10.1007/s00454-024-00660-y","DOIUrl":null,"url":null,"abstract":"<p>The approximation of a circle with the edges of a fine square grid distorts the perimeter by a factor about <span>\\(\\tfrac{4}{\\pi }\\)</span>. We prove that this factor is the same <i>on average</i> (in the ergodic sense) for approximations of any rectifiable curve by the edges of any non-exotic Delaunay mosaic (known as <i>Voronoi path</i>), and extend the results to all dimensions, generalizing Voronoi paths to <i>Voronoi scapes</i>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Average and Expected Distortion of Voronoi Paths and Scapes\",\"authors\":\"Herbert Edelsbrunner, Anton Nikitenko\",\"doi\":\"10.1007/s00454-024-00660-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The approximation of a circle with the edges of a fine square grid distorts the perimeter by a factor about <span>\\\\(\\\\tfrac{4}{\\\\pi }\\\\)</span>. We prove that this factor is the same <i>on average</i> (in the ergodic sense) for approximations of any rectifiable curve by the edges of any non-exotic Delaunay mosaic (known as <i>Voronoi path</i>), and extend the results to all dimensions, generalizing Voronoi paths to <i>Voronoi scapes</i>.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00660-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00660-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用精细正方形网格的边缘近似一个圆时,其周长的扭曲系数约为\(\tfrac{4}{pi }\) 。我们证明,对于用任何非奇异的 Delaunay 马赛克(被称为 Voronoi 路径)的边缘逼近任何可整型曲线,这个因子的平均值是相同的(在遍历意义上),并将结果扩展到所有维度,将 Voronoi 路径推广到 Voronoi Scapes。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Average and Expected Distortion of Voronoi Paths and Scapes

分享
查看原文
Average and Expected Distortion of Voronoi Paths and Scapes

The approximation of a circle with the edges of a fine square grid distorts the perimeter by a factor about \(\tfrac{4}{\pi }\). We prove that this factor is the same on average (in the ergodic sense) for approximations of any rectifiable curve by the edges of any non-exotic Delaunay mosaic (known as Voronoi path), and extend the results to all dimensions, generalizing Voronoi paths to Voronoi scapes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信