{"title":"正常复合物的混合体积","authors":"Lauren Nowak, Patrick O’Melveny, Dustin Ross","doi":"10.1007/s00454-024-00662-w","DOIUrl":null,"url":null,"abstract":"<p>Normal complexes are orthogonal truncations of simplicial fans. In this paper, we develop the study of mixed volumes for normal complexes. Our main result is a sufficiency condition that ensures when the mixed volumes of normal complexes associated to a given fan satisfy the Alexandrov–Fenchel inequalities. By specializing to Bergman fans of matroids, we give a new proof of the Heron–Rota–Welsh Conjecture as a consequence of the Alexandrov–Fenchel inequalities for normal complexes.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mixed Volumes of Normal Complexes\",\"authors\":\"Lauren Nowak, Patrick O’Melveny, Dustin Ross\",\"doi\":\"10.1007/s00454-024-00662-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Normal complexes are orthogonal truncations of simplicial fans. In this paper, we develop the study of mixed volumes for normal complexes. Our main result is a sufficiency condition that ensures when the mixed volumes of normal complexes associated to a given fan satisfy the Alexandrov–Fenchel inequalities. By specializing to Bergman fans of matroids, we give a new proof of the Heron–Rota–Welsh Conjecture as a consequence of the Alexandrov–Fenchel inequalities for normal complexes.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00662-w\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00662-w","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Normal complexes are orthogonal truncations of simplicial fans. In this paper, we develop the study of mixed volumes for normal complexes. Our main result is a sufficiency condition that ensures when the mixed volumes of normal complexes associated to a given fan satisfy the Alexandrov–Fenchel inequalities. By specializing to Bergman fans of matroids, we give a new proof of the Heron–Rota–Welsh Conjecture as a consequence of the Alexandrov–Fenchel inequalities for normal complexes.