根据多宽度对宽度为 1 的晶格四面体进行分类

IF 0.6 3区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Girtrude Hamm
{"title":"根据多宽度对宽度为 1 的晶格四面体进行分类","authors":"Girtrude Hamm","doi":"10.1007/s00454-024-00659-5","DOIUrl":null,"url":null,"abstract":"<p>We introduce the multi-width of a lattice polytope and use this to classify and count all lattice tetrahedra with multi-width <span>\\((1,w_2,w_3)\\)</span>. The approach used in this classification can be extended into a computer algorithm to classify lattice tetrahedra of any given multi-width. We use this to classify tetrahedra with multi-width <span>\\((2,w_2,w_3)\\)</span> for small <span>\\(w_2\\)</span> and <span>\\(w_3\\)</span> and make conjectures about the function counting lattice tetrahedra of any multi-width.</p>","PeriodicalId":50574,"journal":{"name":"Discrete & Computational Geometry","volume":"74 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification of Width 1 Lattice Tetrahedra by Their Multi-Width\",\"authors\":\"Girtrude Hamm\",\"doi\":\"10.1007/s00454-024-00659-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We introduce the multi-width of a lattice polytope and use this to classify and count all lattice tetrahedra with multi-width <span>\\\\((1,w_2,w_3)\\\\)</span>. The approach used in this classification can be extended into a computer algorithm to classify lattice tetrahedra of any given multi-width. We use this to classify tetrahedra with multi-width <span>\\\\((2,w_2,w_3)\\\\)</span> for small <span>\\\\(w_2\\\\)</span> and <span>\\\\(w_3\\\\)</span> and make conjectures about the function counting lattice tetrahedra of any multi-width.</p>\",\"PeriodicalId\":50574,\"journal\":{\"name\":\"Discrete & Computational Geometry\",\"volume\":\"74 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete & Computational Geometry\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00454-024-00659-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete & Computational Geometry","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00454-024-00659-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

我们引入了格子多面体的多宽,并以此对所有具有多宽((1,w_2,w_3))的格子四面体进行分类和计数。这种分类方法可以扩展为一种计算机算法,用来对任意给定多宽的网格四面体进行分类。我们用它来对小\(w_2\)和\(w_3\)的多宽\((2,w_2,w_3)\的格子四面体进行分类,并对任意多宽的格子四面体的计数函数提出猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Classification of Width 1 Lattice Tetrahedra by Their Multi-Width

Classification of Width 1 Lattice Tetrahedra by Their Multi-Width

We introduce the multi-width of a lattice polytope and use this to classify and count all lattice tetrahedra with multi-width \((1,w_2,w_3)\). The approach used in this classification can be extended into a computer algorithm to classify lattice tetrahedra of any given multi-width. We use this to classify tetrahedra with multi-width \((2,w_2,w_3)\) for small \(w_2\) and \(w_3\) and make conjectures about the function counting lattice tetrahedra of any multi-width.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete & Computational Geometry
Discrete & Computational Geometry 数学-计算机:理论方法
CiteScore
1.80
自引率
12.50%
发文量
99
审稿时长
6-12 weeks
期刊介绍: Discrete & Computational Geometry (DCG) is an international journal of mathematics and computer science, covering a broad range of topics in which geometry plays a fundamental role. It publishes papers on such topics as configurations and arrangements, spatial subdivision, packing, covering, and tiling, geometric complexity, polytopes, point location, geometric probability, geometric range searching, combinatorial and computational topology, probabilistic techniques in computational geometry, geometric graphs, geometry of numbers, and motion planning.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信