{"title":"计算大型偏斜对称矩阵若干极值特征对的偏斜对称兰克佐斯对角线化方法","authors":"Jinzhi Huang, Zhongxiao Jia","doi":"10.1137/23m1553029","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1114-1147, June 2024. <br/> Abstract. The spectral decomposition of a real skew-symmetric matrix is shown to be equivalent to a specific structured singular value decomposition (SVD) of the matrix. Based on such equivalence, we propose a skew-symmetric Lanczos bidiagonalization (SSLBD) method to compute extremal singular values and the corresponding singular vectors of the matrix, from which its extremal conjugate eigenpairs are recovered pairwise in real arithmetic. A number of convergence results on the method are established, and accuracy estimates for approximate singular triplets are given. In finite precision arithmetic, it is proven that the semi-orthogonality of each set of the computed left and right Lanczos basis vectors and the semi-biorthogonality of two sets of basis vectors are needed to compute the singular values accurately and to make the method work as if it does in exact arithmetic. A commonly used efficient partial reorthogonalization strategy is adapted to maintain the desired semi-orthogonality and semi-biorthogonality. For practical purpose, an implicitly restarted SSLBD algorithm is developed with partial reorthogonalization. Numerical experiments illustrate the effectiveness and overall efficiency of the algorithm.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Skew-Symmetric Lanczos Bidiagonalization Method for Computing Several Extremal Eigenpairs of a Large Skew-Symmetric Matrix\",\"authors\":\"Jinzhi Huang, Zhongxiao Jia\",\"doi\":\"10.1137/23m1553029\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1114-1147, June 2024. <br/> Abstract. The spectral decomposition of a real skew-symmetric matrix is shown to be equivalent to a specific structured singular value decomposition (SVD) of the matrix. Based on such equivalence, we propose a skew-symmetric Lanczos bidiagonalization (SSLBD) method to compute extremal singular values and the corresponding singular vectors of the matrix, from which its extremal conjugate eigenpairs are recovered pairwise in real arithmetic. A number of convergence results on the method are established, and accuracy estimates for approximate singular triplets are given. In finite precision arithmetic, it is proven that the semi-orthogonality of each set of the computed left and right Lanczos basis vectors and the semi-biorthogonality of two sets of basis vectors are needed to compute the singular values accurately and to make the method work as if it does in exact arithmetic. A commonly used efficient partial reorthogonalization strategy is adapted to maintain the desired semi-orthogonality and semi-biorthogonality. For practical purpose, an implicitly restarted SSLBD algorithm is developed with partial reorthogonalization. Numerical experiments illustrate the effectiveness and overall efficiency of the algorithm.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-06-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/23m1553029\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/23m1553029","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
A Skew-Symmetric Lanczos Bidiagonalization Method for Computing Several Extremal Eigenpairs of a Large Skew-Symmetric Matrix
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 2, Page 1114-1147, June 2024. Abstract. The spectral decomposition of a real skew-symmetric matrix is shown to be equivalent to a specific structured singular value decomposition (SVD) of the matrix. Based on such equivalence, we propose a skew-symmetric Lanczos bidiagonalization (SSLBD) method to compute extremal singular values and the corresponding singular vectors of the matrix, from which its extremal conjugate eigenpairs are recovered pairwise in real arithmetic. A number of convergence results on the method are established, and accuracy estimates for approximate singular triplets are given. In finite precision arithmetic, it is proven that the semi-orthogonality of each set of the computed left and right Lanczos basis vectors and the semi-biorthogonality of two sets of basis vectors are needed to compute the singular values accurately and to make the method work as if it does in exact arithmetic. A commonly used efficient partial reorthogonalization strategy is adapted to maintain the desired semi-orthogonality and semi-biorthogonality. For practical purpose, an implicitly restarted SSLBD algorithm is developed with partial reorthogonalization. Numerical experiments illustrate the effectiveness and overall efficiency of the algorithm.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.