{"title":"无指向类别的代数 K0","authors":"Felix Küng","doi":"10.1142/s0219498825502743","DOIUrl":null,"url":null,"abstract":"<p>We construct a natural generalization of the Grothendieck group <span><math altimg=\"eq-00003.gif\" display=\"inline\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> to the case of possibly unpointed categories admitting pushouts by using the concept of heaps recently introduced by Brezinzki. In case of a monoidal category, the defined K0 is shown to be a truss. It is shown that the construction generalizes the classical <span><math altimg=\"eq-00004.gif\" display=\"inline\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> of an abelian category as the group retract along the isomorphism class of the zero object. We finish by applying this construction to construct the integers with addition and multiplication as the decategorification of finite sets and show that in this <span><math altimg=\"eq-00005.gif\" display=\"inline\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\"false\">(</mo><munder accentunder=\"false\"><mrow><mstyle><mtext mathvariant=\"normal\">Top</mtext></mstyle></mrow><mo accent=\"true\">̲</mo></munder><mo stretchy=\"false\">)</mo></math></span><span></span> one can identify a CW-complex with the iterated product of its cells.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":"19 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Algebraic K0 for unpointed categories\",\"authors\":\"Felix Küng\",\"doi\":\"10.1142/s0219498825502743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We construct a natural generalization of the Grothendieck group <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> to the case of possibly unpointed categories admitting pushouts by using the concept of heaps recently introduced by Brezinzki. In case of a monoidal category, the defined K0 is shown to be a truss. It is shown that the construction generalizes the classical <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub></math></span><span></span> of an abelian category as the group retract along the isomorphism class of the zero object. We finish by applying this construction to construct the integers with addition and multiplication as the decategorification of finite sets and show that in this <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><msub><mrow><mstyle><mtext mathvariant=\\\"normal\\\">K</mtext></mstyle></mrow><mrow><mn>0</mn></mrow></msub><mo stretchy=\\\"false\\\">(</mo><munder accentunder=\\\"false\\\"><mrow><mstyle><mtext mathvariant=\\\"normal\\\">Top</mtext></mstyle></mrow><mo accent=\\\"true\\\">̲</mo></munder><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> one can identify a CW-complex with the iterated product of its cells.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825502743\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825502743","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
We construct a natural generalization of the Grothendieck group to the case of possibly unpointed categories admitting pushouts by using the concept of heaps recently introduced by Brezinzki. In case of a monoidal category, the defined K0 is shown to be a truss. It is shown that the construction generalizes the classical of an abelian category as the group retract along the isomorphism class of the zero object. We finish by applying this construction to construct the integers with addition and multiplication as the decategorification of finite sets and show that in this one can identify a CW-complex with the iterated product of its cells.
期刊介绍:
The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.