{"title":"羰基镍粉末在烧结过程中产生的复合材料中孔隙结构的演变","authors":"P. Ya. Radchenko, O. I. Hetman","doi":"10.1007/s11106-024-00415-7","DOIUrl":null,"url":null,"abstract":"<p>The influence of pore structure evolution in compacts sintered from nickel carbonyl powder with an average particle size of 1.4 μm in the temperature range 200–1000°C on local and bulk shrinkage was analyzed. The pore structure of the samples was characterized by the maximum and average diameters of pore channel constrictions determined by the Barus–Bechhold method. To minimize local (incoherent) shrinkage in the sintering of fine nickel powders, a criterion for pore structure homogeneity in compacts, α ≤ 0.03, was selected. The criterion was determined by the difference between the maximum and average diameters of pore channel constrictions. The influence of pore structure evolution on local and bulk shrinkage during sintering of compacts produced from nickel carbonyl powder with an average particle size of 1.4 and 4 μm was experimentally confirmed. The local shrinkage was due to the three-level structure and wide particle size distribution of the nickel carbonyl powders. A method was proposed to determine the average diameter of particles (agglomerates) in nickel carbonyl powders using the Kozeny equation, establishing a relationship between the particle diameter, the maximum diameter of pore channel constrictions, and the porosity of the compacts, varying from 0.25 to 0.45.</p>","PeriodicalId":742,"journal":{"name":"Powder Metallurgy and Metal Ceramics","volume":"62 9-10","pages":"529 - 535"},"PeriodicalIF":0.9000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering\",\"authors\":\"P. Ya. Radchenko, O. I. Hetman\",\"doi\":\"10.1007/s11106-024-00415-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The influence of pore structure evolution in compacts sintered from nickel carbonyl powder with an average particle size of 1.4 μm in the temperature range 200–1000°C on local and bulk shrinkage was analyzed. The pore structure of the samples was characterized by the maximum and average diameters of pore channel constrictions determined by the Barus–Bechhold method. To minimize local (incoherent) shrinkage in the sintering of fine nickel powders, a criterion for pore structure homogeneity in compacts, α ≤ 0.03, was selected. The criterion was determined by the difference between the maximum and average diameters of pore channel constrictions. The influence of pore structure evolution on local and bulk shrinkage during sintering of compacts produced from nickel carbonyl powder with an average particle size of 1.4 and 4 μm was experimentally confirmed. The local shrinkage was due to the three-level structure and wide particle size distribution of the nickel carbonyl powders. A method was proposed to determine the average diameter of particles (agglomerates) in nickel carbonyl powders using the Kozeny equation, establishing a relationship between the particle diameter, the maximum diameter of pore channel constrictions, and the porosity of the compacts, varying from 0.25 to 0.45.</p>\",\"PeriodicalId\":742,\"journal\":{\"name\":\"Powder Metallurgy and Metal Ceramics\",\"volume\":\"62 9-10\",\"pages\":\"529 - 535\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Powder Metallurgy and Metal Ceramics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11106-024-00415-7\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, CERAMICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Powder Metallurgy and Metal Ceramics","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11106-024-00415-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
Evolution of Pore Structure in Compacts Produced from Nickel Carbonyl Powders during Sintering
The influence of pore structure evolution in compacts sintered from nickel carbonyl powder with an average particle size of 1.4 μm in the temperature range 200–1000°C on local and bulk shrinkage was analyzed. The pore structure of the samples was characterized by the maximum and average diameters of pore channel constrictions determined by the Barus–Bechhold method. To minimize local (incoherent) shrinkage in the sintering of fine nickel powders, a criterion for pore structure homogeneity in compacts, α ≤ 0.03, was selected. The criterion was determined by the difference between the maximum and average diameters of pore channel constrictions. The influence of pore structure evolution on local and bulk shrinkage during sintering of compacts produced from nickel carbonyl powder with an average particle size of 1.4 and 4 μm was experimentally confirmed. The local shrinkage was due to the three-level structure and wide particle size distribution of the nickel carbonyl powders. A method was proposed to determine the average diameter of particles (agglomerates) in nickel carbonyl powders using the Kozeny equation, establishing a relationship between the particle diameter, the maximum diameter of pore channel constrictions, and the porosity of the compacts, varying from 0.25 to 0.45.
期刊介绍:
Powder Metallurgy and Metal Ceramics covers topics of the theory, manufacturing technology, and properties of powder; technology of forming processes; the technology of sintering, heat treatment, and thermo-chemical treatment; properties of sintered materials; and testing methods.