循环的补集或平方的近自动形态

IF 0.5 3区 数学 Q3 MATHEMATICS
Jinxing Zhao
{"title":"循环的补集或平方的近自动形态","authors":"Jinxing Zhao","doi":"10.1142/s021949882550286x","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mi>G</mi></math></span><span></span> be a graph with vertex set <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mi>V</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\"><mi>f</mi></math></span><span></span> a permutation of <span><math altimg=\"eq-00004.gif\" display=\"inline\"><mi>V</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. Define <span><math altimg=\"eq-00005.gif\" display=\"inline\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>|</mo><mi>d</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">−</mo><mi>d</mi><mo stretchy=\"false\">(</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo><mo>,</mo><mi>f</mi><mo stretchy=\"false\">(</mo><mi>y</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">)</mo><mo>|</mo></math></span><span></span> and <span><math altimg=\"eq-00006.gif\" display=\"inline\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mo>∑</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, where the sum is taken over all unordered pairs <span><math altimg=\"eq-00007.gif\" display=\"inline\"><mi>x</mi></math></span><span></span>, <span><math altimg=\"eq-00008.gif\" display=\"inline\"><mi>y</mi></math></span><span></span> of distinct vertices of <span><math altimg=\"eq-00009.gif\" display=\"inline\"><mi>G</mi></math></span><span></span>. Let <span><math altimg=\"eq-00010.gif\" display=\"inline\"><mi>π</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> denote the smallest positive value of <span><math altimg=\"eq-00011.gif\" display=\"inline\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> among all permutations <span><math altimg=\"eq-00012.gif\" display=\"inline\"><mi>f</mi></math></span><span></span> of <span><math altimg=\"eq-00013.gif\" display=\"inline\"><mi>V</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span>. A permutation <span><math altimg=\"eq-00014.gif\" display=\"inline\"><mi>f</mi></math></span><span></span> with <span><math altimg=\"eq-00015.gif\" display=\"inline\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mi>π</mi><mo stretchy=\"false\">(</mo><mi>G</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is called a near automorphism of <span><math altimg=\"eq-00016.gif\" display=\"inline\"><mi>G</mi></math></span><span></span>. In this paper, the near automorphisms of the complement or the square of a cycle are characterized. Moreover, <span><math altimg=\"eq-00017.gif\" display=\"inline\"><mi>π</mi><mo stretchy=\"false\">(</mo><mover accent=\"false\"><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mo accent=\"true\">¯</mo></mover><mo stretchy=\"false\">)</mo></math></span><span></span> and <span><math altimg=\"eq-00018.gif\" display=\"inline\"><mi>π</mi><mfenced close=\")\" open=\"(\" separators=\"\"><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span><span></span> are determined.</p>","PeriodicalId":54888,"journal":{"name":"Journal of Algebra and Its Applications","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Near automorphisms of the complement or the square of a cycle\",\"authors\":\"Jinxing Zhao\",\"doi\":\"10.1142/s021949882550286x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mi>G</mi></math></span><span></span> be a graph with vertex set <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><mi>V</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\"><mi>f</mi></math></span><span></span> a permutation of <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\"><mi>V</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Define <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo>|</mo><mi>d</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">−</mo><mi>d</mi><mo stretchy=\\\"false\\\">(</mo><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo><mo>,</mo><mi>f</mi><mo stretchy=\\\"false\\\">(</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo><mo stretchy=\\\"false\\\">)</mo><mo>|</mo></math></span><span></span> and <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mo>∑</mo><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>, where the sum is taken over all unordered pairs <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\"><mi>x</mi></math></span><span></span>, <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\"><mi>y</mi></math></span><span></span> of distinct vertices of <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\"><mi>G</mi></math></span><span></span>. Let <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\"><mi>π</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> denote the smallest positive value of <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> among all permutations <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\"><mi>f</mi></math></span><span></span> of <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\"><mi>V</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. A permutation <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\"><mi>f</mi></math></span><span></span> with <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\"><msub><mrow><mi>δ</mi></mrow><mrow><mi>f</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mi>π</mi><mo stretchy=\\\"false\\\">(</mo><mi>G</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> is called a near automorphism of <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\"><mi>G</mi></math></span><span></span>. In this paper, the near automorphisms of the complement or the square of a cycle are characterized. Moreover, <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\"><mi>π</mi><mo stretchy=\\\"false\\\">(</mo><mover accent=\\\"false\\\"><mrow><msub><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow></msub></mrow><mo accent=\\\"true\\\">¯</mo></mover><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\"><mi>π</mi><mfenced close=\\\")\\\" open=\\\"(\\\" separators=\\\"\\\"><mrow><msubsup><mrow><mi>C</mi></mrow><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msubsup></mrow></mfenced></math></span><span></span> are determined.</p>\",\"PeriodicalId\":54888,\"journal\":{\"name\":\"Journal of Algebra and Its Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-05-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Algebra and Its Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s021949882550286x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Algebra and Its Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s021949882550286x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

设 G 是一个有顶点集 V(G) 的图,f 是 V(G) 的置换。定义 δf(x,y)=|d(x,y)-d(f(x),f(y))| 和 δf(G)=∑δf(x,y),其中总和取自 G 中所有无序的不同顶点对 x、y。具有 δf(G)=π(G)的置换 f 称为 G 的近自动形。此外,本文还确定了 π(Cn¯) 和 πCn2 。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Near automorphisms of the complement or the square of a cycle

Let G be a graph with vertex set V(G), f a permutation of V(G). Define δf(x,y)=|d(x,y)d(f(x),f(y))| and δf(G)=δf(x,y), where the sum is taken over all unordered pairs x, y of distinct vertices of G. Let π(G) denote the smallest positive value of δf(G) among all permutations f of V(G). A permutation f with δf(G)=π(G) is called a near automorphism of G. In this paper, the near automorphisms of the complement or the square of a cycle are characterized. Moreover, π(Cn¯) and πCn2 are determined.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
226
审稿时长
4-8 weeks
期刊介绍: The Journal of Algebra and Its Applications will publish papers both on theoretical and on applied aspects of Algebra. There is special interest in papers that point out innovative links between areas of Algebra and fields of application. As the field of Algebra continues to experience tremendous growth and diversification, we intend to provide the mathematical community with a central source for information on both the theoretical and the applied aspects of the discipline. While the journal will be primarily devoted to the publication of original research, extraordinary expository articles that encourage communication between algebraists and experts on areas of application as well as those presenting the state of the art on a given algebraic sub-discipline will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信