Kustaanheimo-Stiefel 变量中的低推力轨迹优化

IF 0.6 4区 物理与天体物理 Q4 ASTRONOMY & ASTROPHYSICS
K. R. Korneev, S. P. Trofimov
{"title":"Kustaanheimo-Stiefel 变量中的低推力轨迹优化","authors":"K. R. Korneev, S. P. Trofimov","doi":"10.1134/s0010952524600288","DOIUrl":null,"url":null,"abstract":"<h3 data-test=\"abstract-sub-heading\">Abstract</h3><p>The regularization of spacecraft motion equations by the Kustaanheimo–Stiefel transformation for coordinates and Sundman’s transformation for time is considered in the problem of low-thrust optimal transfer. From Pontryagin’s maximum principle, the thrust vector optimal control is derived under the limited power condition. The Earth–Mars transfer problem is solved in regular variables. The comparison of calculated trajectories with the ones obtained by the parameter continuation method is performed, and the stability properties of the two-point boundary value problem in the Cartesian and regular variables are studied.</p>","PeriodicalId":56319,"journal":{"name":"Cosmic Research","volume":"93 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Thrust Trajectory Optimization in Kustaanheimo–Stiefel Variables\",\"authors\":\"K. R. Korneev, S. P. Trofimov\",\"doi\":\"10.1134/s0010952524600288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3 data-test=\\\"abstract-sub-heading\\\">Abstract</h3><p>The regularization of spacecraft motion equations by the Kustaanheimo–Stiefel transformation for coordinates and Sundman’s transformation for time is considered in the problem of low-thrust optimal transfer. From Pontryagin’s maximum principle, the thrust vector optimal control is derived under the limited power condition. The Earth–Mars transfer problem is solved in regular variables. The comparison of calculated trajectories with the ones obtained by the parameter continuation method is performed, and the stability properties of the two-point boundary value problem in the Cartesian and regular variables are studied.</p>\",\"PeriodicalId\":56319,\"journal\":{\"name\":\"Cosmic Research\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cosmic Research\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1134/s0010952524600288\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cosmic Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1134/s0010952524600288","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 在低推力优化转移问题中,考虑了通过坐标的 Kustaanheimo-Stiefel 变换和时间的 Sundman 变换对航天器运动方程进行正则化。根据庞特里亚金的最大原则,推力矢量最优控制是在有限功率条件下推导出来的。地-火星转移问题在常规变量中求解。对计算出的轨迹与参数延续法得到的轨迹进行了比较,并研究了笛卡尔变量和正则变量中两点边界值问题的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Low-Thrust Trajectory Optimization in Kustaanheimo–Stiefel Variables

Low-Thrust Trajectory Optimization in Kustaanheimo–Stiefel Variables

Abstract

The regularization of spacecraft motion equations by the Kustaanheimo–Stiefel transformation for coordinates and Sundman’s transformation for time is considered in the problem of low-thrust optimal transfer. From Pontryagin’s maximum principle, the thrust vector optimal control is derived under the limited power condition. The Earth–Mars transfer problem is solved in regular variables. The comparison of calculated trajectories with the ones obtained by the parameter continuation method is performed, and the stability properties of the two-point boundary value problem in the Cartesian and regular variables are studied.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cosmic Research
Cosmic Research 地学天文-工程:宇航
CiteScore
1.10
自引率
33.30%
发文量
41
审稿时长
6-12 weeks
期刊介绍: Cosmic Research publishes scientific papers covering all subjects of space science and technology, including the following: ballistics, flight dynamics of the Earth’s artificial satellites and automatic interplanetary stations; problems of transatmospheric descent; design and structure of spacecraft and scientific research instrumentation; life support systems and radiation safety of manned spacecrafts; exploration of the Earth from Space; exploration of near space; exploration of the Sun, planets, secondary planets, and interplanetary medium; exploration of stars, nebulae, interstellar medium, galaxies, and quasars from spacecraft; and various astrophysical problems related to space exploration. A chronicle of scientific events and other notices concerning the main topics of the journal are also presented.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信