具有奇异相互作用的麦金-弗拉索夫方程的存在性和唯一性

IF 1 3区 数学 Q1 MATHEMATICS
Guohuan Zhao
{"title":"具有奇异相互作用的麦金-弗拉索夫方程的存在性和唯一性","authors":"Guohuan Zhao","doi":"10.1007/s11118-024-10148-2","DOIUrl":null,"url":null,"abstract":"<p>We investigate the well-posedness of following McKean-Vlasov equation in <span>\\(\\mathbb {R}^d\\)</span>: </p><span>$$\\textrm{d} X_t=\\sigma (t,X_t, \\mu _{X_t})\\textrm{d} W_t+b(t, X_t, \\mu _{X_t}) \\textrm{d} t,$$</span><p>where <span>\\(\\mu _{X_t}\\)</span> is the law of <span>\\(X_t\\)</span>. The existence of solutions is demonstrated when <span>\\(\\sigma \\)</span> satisfies certain non-degeneracy and continuity assumptions, and when <i>b</i> meets some integrability conditions, and continuity requirements in the (generalized) total variation distance. Furthermore, uniqueness is established under additional continuity assumptions of a Lipschitz type.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"26 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence and Uniqueness for McKean-Vlasov Equations with Singular Interactions\",\"authors\":\"Guohuan Zhao\",\"doi\":\"10.1007/s11118-024-10148-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the well-posedness of following McKean-Vlasov equation in <span>\\\\(\\\\mathbb {R}^d\\\\)</span>: </p><span>$$\\\\textrm{d} X_t=\\\\sigma (t,X_t, \\\\mu _{X_t})\\\\textrm{d} W_t+b(t, X_t, \\\\mu _{X_t}) \\\\textrm{d} t,$$</span><p>where <span>\\\\(\\\\mu _{X_t}\\\\)</span> is the law of <span>\\\\(X_t\\\\)</span>. The existence of solutions is demonstrated when <span>\\\\(\\\\sigma \\\\)</span> satisfies certain non-degeneracy and continuity assumptions, and when <i>b</i> meets some integrability conditions, and continuity requirements in the (generalized) total variation distance. Furthermore, uniqueness is established under additional continuity assumptions of a Lipschitz type.</p>\",\"PeriodicalId\":49679,\"journal\":{\"name\":\"Potential Analysis\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Potential Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11118-024-10148-2\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10148-2","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了以下麦金-弗拉索夫方程在 \(\mathbb {R}^d\) 中的良好提出性:$$\textrm{d}X_t=sigma (t,X_t, \mu _{X_t})\textrm{d}W_t+b(t, X_t, \mu _{X_t}) \textrm{d} t,$$其中 \(\mu _{X_t}\) 是 \(X_t\)的规律。当 \(\sigma \) 满足某些非退化性和连续性假设时,当 b 满足某些可整性条件和(广义)总变化距离的连续性要求时,解的存在性就得到了证明。此外,在利普希兹类型的额外连续性假设下,唯一性也得以确立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence and Uniqueness for McKean-Vlasov Equations with Singular Interactions

We investigate the well-posedness of following McKean-Vlasov equation in \(\mathbb {R}^d\):

$$\textrm{d} X_t=\sigma (t,X_t, \mu _{X_t})\textrm{d} W_t+b(t, X_t, \mu _{X_t}) \textrm{d} t,$$

where \(\mu _{X_t}\) is the law of \(X_t\). The existence of solutions is demonstrated when \(\sigma \) satisfies certain non-degeneracy and continuity assumptions, and when b meets some integrability conditions, and continuity requirements in the (generalized) total variation distance. Furthermore, uniqueness is established under additional continuity assumptions of a Lipschitz type.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Potential Analysis
Potential Analysis 数学-数学
CiteScore
2.20
自引率
9.10%
发文量
83
审稿时长
>12 weeks
期刊介绍: The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信