{"title":"设计具有宽带非对称传输功能的双层、无通孔、偏振旋转元表面","authors":"Chunyu Li, Peng Fei","doi":"10.1007/s10762-024-00992-z","DOIUrl":null,"url":null,"abstract":"<p>Techniques for adjusting and controlling the polarization state of electromagnetic waves are of great importance in the optical and microwave regimes. In this letter, a dual-layer, via-free, polarization-rotating metasurface with wideband and effective asymmetric transmission properties is presented. Numerical and experimental results show that the metasurface can rotate the polarization of the incident electromagnetic wave by 90°, from 24.5 to approximately 30.9 GHz (relative bandwidth 23.10%). The simple structure and good performance of the proposed metasurface make it a promising candidate in quasimillimeter wave radar and communication applications and can be easily scaled to other frequency bands.</p>","PeriodicalId":16181,"journal":{"name":"Journal of Infrared, Millimeter, and Terahertz Waves","volume":"23 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a Dual Layer, Via-free, Polarization-rotating Metasurface with Wideband Asymmetric Transmission\",\"authors\":\"Chunyu Li, Peng Fei\",\"doi\":\"10.1007/s10762-024-00992-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Techniques for adjusting and controlling the polarization state of electromagnetic waves are of great importance in the optical and microwave regimes. In this letter, a dual-layer, via-free, polarization-rotating metasurface with wideband and effective asymmetric transmission properties is presented. Numerical and experimental results show that the metasurface can rotate the polarization of the incident electromagnetic wave by 90°, from 24.5 to approximately 30.9 GHz (relative bandwidth 23.10%). The simple structure and good performance of the proposed metasurface make it a promising candidate in quasimillimeter wave radar and communication applications and can be easily scaled to other frequency bands.</p>\",\"PeriodicalId\":16181,\"journal\":{\"name\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Infrared, Millimeter, and Terahertz Waves\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10762-024-00992-z\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Infrared, Millimeter, and Terahertz Waves","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10762-024-00992-z","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a Dual Layer, Via-free, Polarization-rotating Metasurface with Wideband Asymmetric Transmission
Techniques for adjusting and controlling the polarization state of electromagnetic waves are of great importance in the optical and microwave regimes. In this letter, a dual-layer, via-free, polarization-rotating metasurface with wideband and effective asymmetric transmission properties is presented. Numerical and experimental results show that the metasurface can rotate the polarization of the incident electromagnetic wave by 90°, from 24.5 to approximately 30.9 GHz (relative bandwidth 23.10%). The simple structure and good performance of the proposed metasurface make it a promising candidate in quasimillimeter wave radar and communication applications and can be easily scaled to other frequency bands.
期刊介绍:
The Journal of Infrared, Millimeter, and Terahertz Waves offers a peer-reviewed platform for the rapid dissemination of original, high-quality research in the frequency window from 30 GHz to 30 THz. The topics covered include: sources, detectors, and other devices; systems, spectroscopy, sensing, interaction between electromagnetic waves and matter, applications, metrology, and communications.
Purely numerical work, especially with commercial software packages, will be published only in very exceptional cases. The same applies to manuscripts describing only algorithms (e.g. pattern recognition algorithms).
Manuscripts submitted to the Journal should discuss a significant advancement to the field of infrared, millimeter, and terahertz waves.