Jeremiah Lübke, Frederic Effenberger, Mike Wilbert, Horst Fichtner and Rainer Grauer
{"title":"实现具有相干结构的合成磁湍流","authors":"Jeremiah Lübke, Frederic Effenberger, Mike Wilbert, Horst Fichtner and Rainer Grauer","doi":"10.1209/0295-5075/ad438f","DOIUrl":null,"url":null,"abstract":"Synthetic turbulence is a relevant tool to study complex astrophysical and space plasma environments inaccessible by direct simulation. However, conventional models lack intermittent coherent structures, which are essential in realistic turbulence. We present a novel method featuring coherent structures, conditional structure function scaling and fieldline curvature statistics comparable to magnetohydrodynamic turbulence. Enhanced transport of charged particles is investigated as well. This method presents significant progress towards physically faithful synthetic turbulence.","PeriodicalId":11738,"journal":{"name":"EPL","volume":"32 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards synthetic magnetic turbulence with coherent structures\",\"authors\":\"Jeremiah Lübke, Frederic Effenberger, Mike Wilbert, Horst Fichtner and Rainer Grauer\",\"doi\":\"10.1209/0295-5075/ad438f\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic turbulence is a relevant tool to study complex astrophysical and space plasma environments inaccessible by direct simulation. However, conventional models lack intermittent coherent structures, which are essential in realistic turbulence. We present a novel method featuring coherent structures, conditional structure function scaling and fieldline curvature statistics comparable to magnetohydrodynamic turbulence. Enhanced transport of charged particles is investigated as well. This method presents significant progress towards physically faithful synthetic turbulence.\",\"PeriodicalId\":11738,\"journal\":{\"name\":\"EPL\",\"volume\":\"32 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPL\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1209/0295-5075/ad438f\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1209/0295-5075/ad438f","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Towards synthetic magnetic turbulence with coherent structures
Synthetic turbulence is a relevant tool to study complex astrophysical and space plasma environments inaccessible by direct simulation. However, conventional models lack intermittent coherent structures, which are essential in realistic turbulence. We present a novel method featuring coherent structures, conditional structure function scaling and fieldline curvature statistics comparable to magnetohydrodynamic turbulence. Enhanced transport of charged particles is investigated as well. This method presents significant progress towards physically faithful synthetic turbulence.
期刊介绍:
General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology.
Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate).
EPL also publishes Comments on Letters previously published in the Journal.