{"title":"DNSRF:基于深度网络的半 NMF 表示框架","authors":"Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang","doi":"10.1145/3670408","DOIUrl":null,"url":null,"abstract":"<p>Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.</p>","PeriodicalId":48967,"journal":{"name":"ACM Transactions on Intelligent Systems and Technology","volume":null,"pages":null},"PeriodicalIF":7.2000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DNSRF: Deep Network-based Semi-NMF Representation Framework\",\"authors\":\"Dexian Wang, Tianrui Li, Ping Deng, Zhipeng Luo, Pengfei Zhang, Keyu Liu, Wei Huang\",\"doi\":\"10.1145/3670408\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.</p>\",\"PeriodicalId\":48967,\"journal\":{\"name\":\"ACM Transactions on Intelligent Systems and Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Intelligent Systems and Technology\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3670408\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Intelligent Systems and Technology","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3670408","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
DNSRF: Deep Network-based Semi-NMF Representation Framework
Representation learning is an important topic in machine learning, pattern recognition, and data mining research. Among many representation learning approaches, semi-nonnegative matrix factorization (SNMF) is a frequently-used one. However, a typical problem of SNMF is that usually there is no learning rate guidance during the optimization process, which often leads to a poor representation ability. To overcome this limitation, we propose a very general representation learning framework (DNSRF) that is based on deep neural net. Essentially, the parameters of the deep net used to construct the DNSRF algorithms are obtained by matrix element update. In combination with different activation functions, DNSRF can be implemented in various ways. In our experiments, we tested nine instances of our DNSRF framework on six benchmark datasets. In comparison with other state-of-the-art methods, the results demonstrate superior performance of our framework, which is thus shown to have a great representation ability.
期刊介绍:
ACM Transactions on Intelligent Systems and Technology is a scholarly journal that publishes the highest quality papers on intelligent systems, applicable algorithms and technology with a multi-disciplinary perspective. An intelligent system is one that uses artificial intelligence (AI) techniques to offer important services (e.g., as a component of a larger system) to allow integrated systems to perceive, reason, learn, and act intelligently in the real world.
ACM TIST is published quarterly (six issues a year). Each issue has 8-11 regular papers, with around 20 published journal pages or 10,000 words per paper. Additional references, proofs, graphs or detailed experiment results can be submitted as a separate appendix, while excessively lengthy papers will be rejected automatically. Authors can include online-only appendices for additional content of their published papers and are encouraged to share their code and/or data with other readers.