线性方程和递推可数集

Juha Honkala
{"title":"线性方程和递推可数集","authors":"Juha Honkala","doi":"arxiv-2406.00688","DOIUrl":null,"url":null,"abstract":"We study connections between linear equations over various semigroups and\nrecursively enumerable sets of positive integers. We give variants of the\nuniversal Diophantine representation of recursively enumerable sets of positive\nintegers established by Matiyasevich. These variants use linear equations with\none unkwown instead of polynomial equations with several unknowns. As a\ncorollary we get undecidability results for linear equations over morphism\nsemigoups and over matrix semigroups.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear equations and recursively enumerable sets\",\"authors\":\"Juha Honkala\",\"doi\":\"arxiv-2406.00688\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study connections between linear equations over various semigroups and\\nrecursively enumerable sets of positive integers. We give variants of the\\nuniversal Diophantine representation of recursively enumerable sets of positive\\nintegers established by Matiyasevich. These variants use linear equations with\\none unkwown instead of polynomial equations with several unknowns. As a\\ncorollary we get undecidability results for linear equations over morphism\\nsemigoups and over matrix semigroups.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"34 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.00688\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.00688","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了各种半群上的线性方程与正整数递归可数集之间的联系。我们给出了马蒂亚舍维奇建立的正整数递归可数集的通用二叉表示法的变体。这些变体使用的是只有一个未知数的线性方程,而不是有多个未知数的多项式方程。作为必然结果,我们得到了关于态群和矩阵半群的线性方程的不可判定性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear equations and recursively enumerable sets
We study connections between linear equations over various semigroups and recursively enumerable sets of positive integers. We give variants of the universal Diophantine representation of recursively enumerable sets of positive integers established by Matiyasevich. These variants use linear equations with one unkwown instead of polynomial equations with several unknowns. As a corollary we get undecidability results for linear equations over morphism semigoups and over matrix semigroups.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信