4 因子路径依赖波动模型的定价与校准

Guido Gazzani, Julien Guyon
{"title":"4 因子路径依赖波动模型的定价与校准","authors":"Guido Gazzani, Julien Guyon","doi":"arxiv-2406.02319","DOIUrl":null,"url":null,"abstract":"We consider the path-dependent volatility (PDV) model of Guyon and Lekeufack\n(2023), where the instantaneous volatility is a linear combination of a\nweighted sum of past returns and the square root of a weighted sum of past\nsquared returns. We discuss the influence of an additional parameter that\nunlocks enough volatility on the upside to reproduce the implied volatility\nsmiles of S&P 500 and VIX options. This PDV model, motivated by empirical\nstudies, comes with computational challenges, especially in relation to VIX\noptions pricing and calibration. We propose an accurate neural network\napproximation of the VIX which leverages on the Markovianity of the 4-factor\nversion of the model. The VIX is learned as a function of the Markovian factors\nand the model parameters. We use this approximation to tackle the joint\ncalibration of S&P 500 and VIX options.","PeriodicalId":501355,"journal":{"name":"arXiv - QuantFin - Pricing of Securities","volume":"7 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pricing and calibration in the 4-factor path-dependent volatility model\",\"authors\":\"Guido Gazzani, Julien Guyon\",\"doi\":\"arxiv-2406.02319\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the path-dependent volatility (PDV) model of Guyon and Lekeufack\\n(2023), where the instantaneous volatility is a linear combination of a\\nweighted sum of past returns and the square root of a weighted sum of past\\nsquared returns. We discuss the influence of an additional parameter that\\nunlocks enough volatility on the upside to reproduce the implied volatility\\nsmiles of S&P 500 and VIX options. This PDV model, motivated by empirical\\nstudies, comes with computational challenges, especially in relation to VIX\\noptions pricing and calibration. We propose an accurate neural network\\napproximation of the VIX which leverages on the Markovianity of the 4-factor\\nversion of the model. The VIX is learned as a function of the Markovian factors\\nand the model parameters. We use this approximation to tackle the joint\\ncalibration of S&P 500 and VIX options.\",\"PeriodicalId\":501355,\"journal\":{\"name\":\"arXiv - QuantFin - Pricing of Securities\",\"volume\":\"7 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - QuantFin - Pricing of Securities\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.02319\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Pricing of Securities","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.02319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑了 Guyon 和 Lekeufack(2023 年)的路径依赖波动率(PDV)模型,其中瞬时波动率是过去收益率加权和与过去平方收益率加权和的平方根的线性组合。我们讨论了一个附加参数的影响,该参数可以锁定足够的上行波动率,从而再现标准普尔 500 指数和 VIX 期权的隐含波动率。这个 PDV 模型是由实证研究激发的,但也面临着计算上的挑战,尤其是在 VIX 期权的定价和校准方面。我们利用该模型 4 因子转换的马尔可夫性,提出了 VIX 的精确神经网络近似值。VIX 是作为马尔可夫因子和模型参数的函数来学习的。我们使用这种近似方法来解决标普 500 和 VIX 期权的联合校准问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pricing and calibration in the 4-factor path-dependent volatility model
We consider the path-dependent volatility (PDV) model of Guyon and Lekeufack (2023), where the instantaneous volatility is a linear combination of a weighted sum of past returns and the square root of a weighted sum of past squared returns. We discuss the influence of an additional parameter that unlocks enough volatility on the upside to reproduce the implied volatility smiles of S&P 500 and VIX options. This PDV model, motivated by empirical studies, comes with computational challenges, especially in relation to VIX options pricing and calibration. We propose an accurate neural network approximation of the VIX which leverages on the Markovianity of the 4-factor version of the model. The VIX is learned as a function of the Markovian factors and the model parameters. We use this approximation to tackle the joint calibration of S&P 500 and VIX options.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信