具有初始代数语义的加权树自动机的生成能力

Manfred Droste, Zoltán Fülöp, Andreja Tepavčević, Heiko Vogler
{"title":"具有初始代数语义的加权树自动机的生成能力","authors":"Manfred Droste, Zoltán Fülöp, Andreja Tepavčević, Heiko Vogler","doi":"arxiv-2405.20753","DOIUrl":null,"url":null,"abstract":"We consider the images of the initial algebra semantics of weighted tree\nautomata over strong bimonoids (hence also over semirings). These images are\nsubsets of the carrier set of the underlying strong bimonoid. We consider\nlocally finite, weakly locally finite, and bi-locally finite strong bimonoids.\nWe show that there exists a strong bimonoid which is weakly locally finite and\nnot locally finite. We also show that if the ranked alphabet contains a binary\nsymbol, then for any finitely generated strong bimonoid, weighted tree automata\ncan generate, via their initial algebra semantics, all elements of the strong\nbimonoid. As a consequence of these results, for weakly locally finite strong\nbimonoids which are not locally finite, weighted tree automata can generate\ninfinite images provided that the input ranked alphabet contains at least one\nbinary symbol. This is in sharp contrast to the setting of weighted string\nautomata, where each such image is known to be finite. As a further\nconsequence, for any finitely generated semiring, there exists a weighted tree\nautomaton which generates, via its run semantics, all elements of the semiring.","PeriodicalId":501124,"journal":{"name":"arXiv - CS - Formal Languages and Automata Theory","volume":"70 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The generating power of weighted tree automata with initial algebra semantics\",\"authors\":\"Manfred Droste, Zoltán Fülöp, Andreja Tepavčević, Heiko Vogler\",\"doi\":\"arxiv-2405.20753\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the images of the initial algebra semantics of weighted tree\\nautomata over strong bimonoids (hence also over semirings). These images are\\nsubsets of the carrier set of the underlying strong bimonoid. We consider\\nlocally finite, weakly locally finite, and bi-locally finite strong bimonoids.\\nWe show that there exists a strong bimonoid which is weakly locally finite and\\nnot locally finite. We also show that if the ranked alphabet contains a binary\\nsymbol, then for any finitely generated strong bimonoid, weighted tree automata\\ncan generate, via their initial algebra semantics, all elements of the strong\\nbimonoid. As a consequence of these results, for weakly locally finite strong\\nbimonoids which are not locally finite, weighted tree automata can generate\\ninfinite images provided that the input ranked alphabet contains at least one\\nbinary symbol. This is in sharp contrast to the setting of weighted string\\nautomata, where each such image is known to be finite. As a further\\nconsequence, for any finitely generated semiring, there exists a weighted tree\\nautomaton which generates, via its run semantics, all elements of the semiring.\",\"PeriodicalId\":501124,\"journal\":{\"name\":\"arXiv - CS - Formal Languages and Automata Theory\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-05-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Formal Languages and Automata Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2405.20753\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Formal Languages and Automata Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2405.20753","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑的是加权树状图的初始代数语义在强双元上(因此也在语义上)的图像。这些图象是底层强双元体载体集的子集。我们考虑了局部有限的、弱局部有限的和双局部有限的强双元体,并证明存在一个弱局部有限而非局部有限的强双元体。我们还证明,如果排序字母表包含二元符号,那么对于任何有限生成的强双元体,加权树自动机都能通过其初始代数语义生成强双元体的所有元素。这些结果的结果是,对于非局部有限的弱局部有限强二元对偶体,只要输入的排序字母表至少包含一个二进制符号,加权树自动机就能生成无限图像。这与加权字符串自动机的情况形成了鲜明对比,在加权字符串自动机中,每个这样的图象都是已知有限的。进而,对于任何有限生成的语义,都存在一个加权树自动机,它可以通过运行语义生成语义的所有元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The generating power of weighted tree automata with initial algebra semantics
We consider the images of the initial algebra semantics of weighted tree automata over strong bimonoids (hence also over semirings). These images are subsets of the carrier set of the underlying strong bimonoid. We consider locally finite, weakly locally finite, and bi-locally finite strong bimonoids. We show that there exists a strong bimonoid which is weakly locally finite and not locally finite. We also show that if the ranked alphabet contains a binary symbol, then for any finitely generated strong bimonoid, weighted tree automata can generate, via their initial algebra semantics, all elements of the strong bimonoid. As a consequence of these results, for weakly locally finite strong bimonoids which are not locally finite, weighted tree automata can generate infinite images provided that the input ranked alphabet contains at least one binary symbol. This is in sharp contrast to the setting of weighted string automata, where each such image is known to be finite. As a further consequence, for any finitely generated semiring, there exists a weighted tree automaton which generates, via its run semantics, all elements of the semiring.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信