{"title":"t-CORE 分段模拟的算术特性","authors":"PRANJAL TALUKDAR","doi":"10.1017/s000497272400042x","DOIUrl":null,"url":null,"abstract":"<p>An integer partition of a positive integer <span>n</span> is called <span>t</span>-core if none of its hook lengths is divisible by <span>t</span>. Gireesh <span>et al.</span> [‘A new analogue of <span>t</span>-core partitions’, <span>Acta Arith.</span> <span>199</span> (2021), 33–53] introduced an analogue <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> of the <span>t</span>-core partition function. They obtained multiplicative formulae and arithmetic identities for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$t \\in \\{3,4,5,8\\}$</span></span></img></span></span> and studied the arithmetic density of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> modulo <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$p_i^{\\,j}$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$t=p_1^{a_1}\\cdots p_m^{a_m}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$p_i\\geq 5$</span></span></img></span></span> are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, <span>J. Integer Seq.</span> <span>27</span> (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_5(n)$</span></span></img></span></span>. We study the arithmetic densities of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_t(n)$</span></span></img></span></span> modulo arbitrary powers of 2 and 3 for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$t=3^\\alpha m$</span></span></img></span></span> where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline11.png\"/><span data-mathjax-type=\"texmath\"><span>$\\gcd (m,6)$</span></span></span></span>=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, <span>Int. J. Number Theory</span> <span>1</span> (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline12.png\"/><span data-mathjax-type=\"texmath\"><span>$\\overline {a}_3(n)$</span></span></span></span> modulo arbitrary powers of 2.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ARITHMETIC PROPERTIES OF AN ANALOGUE OF t-CORE PARTITIONS\",\"authors\":\"PRANJAL TALUKDAR\",\"doi\":\"10.1017/s000497272400042x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>An integer partition of a positive integer <span>n</span> is called <span>t</span>-core if none of its hook lengths is divisible by <span>t</span>. Gireesh <span>et al.</span> [‘A new analogue of <span>t</span>-core partitions’, <span>Acta Arith.</span> <span>199</span> (2021), 33–53] introduced an analogue <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_t(n)$</span></span></img></span></span> of the <span>t</span>-core partition function. They obtained multiplicative formulae and arithmetic identities for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_t(n)$</span></span></img></span></span> where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t \\\\in \\\\{3,4,5,8\\\\}$</span></span></img></span></span> and studied the arithmetic density of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_t(n)$</span></span></img></span></span> modulo <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p_i^{\\\\,j}$</span></span></img></span></span> where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t=p_1^{a_1}\\\\cdots p_m^{a_m}$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p_i\\\\geq 5$</span></span></img></span></span> are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, <span>J. Integer Seq.</span> <span>27</span> (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_5(n)$</span></span></img></span></span>. We study the arithmetic densities of <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_t(n)$</span></span></img></span></span> modulo arbitrary powers of 2 and 3 for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline10.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$t=3^\\\\alpha m$</span></span></img></span></span> where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline11.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\gcd (m,6)$</span></span></span></span>=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, <span>Int. J. Number Theory</span> <span>1</span> (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240531111127147-0430:S000497272400042X:S000497272400042X_inline12.png\\\"/><span data-mathjax-type=\\\"texmath\\\"><span>$\\\\overline {a}_3(n)$</span></span></span></span> modulo arbitrary powers of 2.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/s000497272400042x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s000497272400042x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
Gireesh 等人['A new analogue of t-core partitions', Acta Arith.他们得到了 $\overline {a}_t(n)$ 的乘法公式和算术等式,其中 $t \in \{3,4,5,8\}$ 并研究了 $\overline {a}_t(n)$ modulo $p_i^{\,j}$ 的算术密度,其中 $t=p_1^{a_1}\cdots p_m^{a_m}$ 和 $p_i\geq 5$ 都是素数。Bandyopadhyay 和 Baruah [' Arithmetic identities for some analogs of the 5-core partition function', J. Integer Seq.27 (2024), 文章编号 24.4.5]证明了 $\overline {a}_5(n)$ 所满足的新算术等式。我们研究了 $/overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^\alpha m$ 的算术密度,其中 $\gcd (m,6)$=1.另外,利用小野和田口的一个结果['某些模块形式的 2-adic 属性及其在算术函数中的应用',Int.J. Number Theory 1 (2005), 75-101]关于赫克算子零点性的结果,我们证明了 $\overline {a}_3(n)$ modulo arbitrary powers of 2 的无穷同余族。
ARITHMETIC PROPERTIES OF AN ANALOGUE OF t-CORE PARTITIONS
An integer partition of a positive integer n is called t-core if none of its hook lengths is divisible by t. Gireesh et al. [‘A new analogue of t-core partitions’, Acta Arith.199 (2021), 33–53] introduced an analogue $\overline {a}_t(n)$ of the t-core partition function. They obtained multiplicative formulae and arithmetic identities for $\overline {a}_t(n)$ where $t \in \{3,4,5,8\}$ and studied the arithmetic density of $\overline {a}_t(n)$ modulo $p_i^{\,j}$ where $t=p_1^{a_1}\cdots p_m^{a_m}$ and $p_i\geq 5$ are primes. Bandyopadhyay and Baruah [‘Arithmetic identities for some analogs of the 5-core partition function’, J. Integer Seq.27 (2024), Article no. 24.4.5] proved new arithmetic identities satisfied by $\overline {a}_5(n)$. We study the arithmetic densities of $\overline {a}_t(n)$ modulo arbitrary powers of 2 and 3 for $t=3^\alpha m$ where $\gcd (m,6)$=1. Also, employing a result of Ono and Taguchi [‘2-adic properties of certain modular forms and their applications to arithmetic functions’, Int. J. Number Theory1 (2005), 75–101] on the nilpotency of Hecke operators, we prove an infinite family of congruences for $\overline {a}_3(n)$ modulo arbitrary powers of 2.