$$\mathbb {R}^n$$ 上量子注入式双框架的识别

IF 0.7 4区 数学 Q2 MATHEMATICS
Atefe Razghandi, Elahe Agheshteh Moghaddam, Ali Akbar Arefijamaal
{"title":"$$\\mathbb {R}^n$$ 上量子注入式双框架的识别","authors":"Atefe Razghandi, Elahe Agheshteh Moghaddam, Ali Akbar Arefijamaal","doi":"10.1007/s41980-024-00886-9","DOIUrl":null,"url":null,"abstract":"<p>The quantum injectivity problem classifies frames which are injective with respect to self-adjoint Hilbert-Schmidt operators. In this paper, we aim to analyze quantum injective frames in terms of the excess of frame elements in <span>\\(\\mathbb {R}^n\\)</span>. Especially, we investigate the connection between the injectivity, full spark and phase retrieval frames. In addition, we detect injective (alternate) dual frames and show that the family of quantum injective dual frames is open and dense in the set of all dual frames. Finally, the stability of quantum injective frames will be addressed.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification of Quantum Injective Dual Frames on $$\\\\mathbb {R}^n$$\",\"authors\":\"Atefe Razghandi, Elahe Agheshteh Moghaddam, Ali Akbar Arefijamaal\",\"doi\":\"10.1007/s41980-024-00886-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The quantum injectivity problem classifies frames which are injective with respect to self-adjoint Hilbert-Schmidt operators. In this paper, we aim to analyze quantum injective frames in terms of the excess of frame elements in <span>\\\\(\\\\mathbb {R}^n\\\\)</span>. Especially, we investigate the connection between the injectivity, full spark and phase retrieval frames. In addition, we detect injective (alternate) dual frames and show that the family of quantum injective dual frames is open and dense in the set of all dual frames. Finally, the stability of quantum injective frames will be addressed.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00886-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00886-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

量子注入性问题是对关于自相关希尔伯特-施密特算子的注入性框架的分类。本文旨在从 \(\mathbb {R}^n\)中帧元素的过量来分析量子注入帧。特别是,我们研究了注入性、全火花和相位检索框架之间的联系。此外,我们还探测了注入(交替)对偶框架,并证明量子注入对偶框架族在所有对偶框架集合中是开放和密集的。最后,我们将讨论量子注入框架的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Identification of Quantum Injective Dual Frames on $$\mathbb {R}^n$$

The quantum injectivity problem classifies frames which are injective with respect to self-adjoint Hilbert-Schmidt operators. In this paper, we aim to analyze quantum injective frames in terms of the excess of frame elements in \(\mathbb {R}^n\). Especially, we investigate the connection between the injectivity, full spark and phase retrieval frames. In addition, we detect injective (alternate) dual frames and show that the family of quantum injective dual frames is open and dense in the set of all dual frames. Finally, the stability of quantum injective frames will be addressed.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信