{"title":"$$\\mathbb {C}^{n}$ 中单位球的谱投影和帕利-维纳定理","authors":"Noureddine Imesmad","doi":"10.1007/s11785-024-01555-9","DOIUrl":null,"url":null,"abstract":"<p>For <span>\\(\\nu \\in \\mathbb {R}\\)</span>, we consider the invariant Laplacians <span>\\(\\Delta _{\\nu }\\)</span> in the unit complex ball <span>\\({\\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\\times U(1))\\)</span></p><span>$$\\begin{aligned} \\Delta _{\\nu }= & {} 4(1-|z|^{2})\\Bigg \\{\\sum _{i,j=1}^{n}(\\delta _{ij}-z_{i}\\bar{z_{j}})\\dfrac{\\partial ^{2}}{\\partial z_{i}\\partial \\bar{z_{j}}}-\\frac{\\nu }{2}\\sum _{j=1}^{n}z_{j}\\dfrac{\\partial }{\\partial z_{j}}+\\frac{\\nu }{2}\\sum _{j=1}^{n}\\bar{z_{j}}\\dfrac{\\partial }{\\partial \\bar{z_{j}}}+\\frac{\\nu ^2}{4}\\Bigg \\} \\end{aligned}$$</span><p>and the spectral projectors <span>\\({\\mathcal {Q}}_{\\lambda ,\\nu }\\)</span> associated to <span>\\(\\Delta _{\\nu }\\)</span> defined by </p><span>$$\\begin{aligned} {\\mathcal {Q}}_{\\lambda ,\\nu }f= & {} |{\\textbf{c}}_{\\nu }(\\lambda )|^{-2}f*\\varphi _{\\lambda ,\\nu }(z), \\end{aligned}$$</span><p>where <span>\\(\\varphi _{\\lambda ,\\nu }\\)</span> is the <span>\\(S(U(n)\\times U(1))\\)</span>-invariant eigenfunction of <span>\\(\\Delta _{\\nu }\\)</span> and <span>\\({\\textbf{c}}_{\\nu }(\\lambda )\\)</span> the Harish-Chandra function. The goal of this paper is to give an image characterization of <span>\\({\\mathcal {Q}}_{\\lambda ,\\nu }\\)</span> of <span>\\({\\mathcal {C}}_{c}^{\\infty }({\\mathcal {B}}^{n})\\)</span> and <span>\\(L^{2}({\\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\\)</span>.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"43 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spectral Projections and Paley–Wiener Theorem for the Unit Ball in $$\\\\mathbb {C}^{n}$$\",\"authors\":\"Noureddine Imesmad\",\"doi\":\"10.1007/s11785-024-01555-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>For <span>\\\\(\\\\nu \\\\in \\\\mathbb {R}\\\\)</span>, we consider the invariant Laplacians <span>\\\\(\\\\Delta _{\\\\nu }\\\\)</span> in the unit complex ball <span>\\\\({\\\\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\\\\times U(1))\\\\)</span></p><span>$$\\\\begin{aligned} \\\\Delta _{\\\\nu }= & {} 4(1-|z|^{2})\\\\Bigg \\\\{\\\\sum _{i,j=1}^{n}(\\\\delta _{ij}-z_{i}\\\\bar{z_{j}})\\\\dfrac{\\\\partial ^{2}}{\\\\partial z_{i}\\\\partial \\\\bar{z_{j}}}-\\\\frac{\\\\nu }{2}\\\\sum _{j=1}^{n}z_{j}\\\\dfrac{\\\\partial }{\\\\partial z_{j}}+\\\\frac{\\\\nu }{2}\\\\sum _{j=1}^{n}\\\\bar{z_{j}}\\\\dfrac{\\\\partial }{\\\\partial \\\\bar{z_{j}}}+\\\\frac{\\\\nu ^2}{4}\\\\Bigg \\\\} \\\\end{aligned}$$</span><p>and the spectral projectors <span>\\\\({\\\\mathcal {Q}}_{\\\\lambda ,\\\\nu }\\\\)</span> associated to <span>\\\\(\\\\Delta _{\\\\nu }\\\\)</span> defined by </p><span>$$\\\\begin{aligned} {\\\\mathcal {Q}}_{\\\\lambda ,\\\\nu }f= & {} |{\\\\textbf{c}}_{\\\\nu }(\\\\lambda )|^{-2}f*\\\\varphi _{\\\\lambda ,\\\\nu }(z), \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\varphi _{\\\\lambda ,\\\\nu }\\\\)</span> is the <span>\\\\(S(U(n)\\\\times U(1))\\\\)</span>-invariant eigenfunction of <span>\\\\(\\\\Delta _{\\\\nu }\\\\)</span> and <span>\\\\({\\\\textbf{c}}_{\\\\nu }(\\\\lambda )\\\\)</span> the Harish-Chandra function. The goal of this paper is to give an image characterization of <span>\\\\({\\\\mathcal {Q}}_{\\\\lambda ,\\\\nu }\\\\)</span> of <span>\\\\({\\\\mathcal {C}}_{c}^{\\\\infty }({\\\\mathcal {B}}^{n})\\\\)</span> and <span>\\\\(L^{2}({\\\\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\\\\)</span>.</p>\",\"PeriodicalId\":50654,\"journal\":{\"name\":\"Complex Analysis and Operator Theory\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Complex Analysis and Operator Theory\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11785-024-01555-9\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01555-9","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Spectral Projections and Paley–Wiener Theorem for the Unit Ball in $$\mathbb {C}^{n}$$
For \(\nu \in \mathbb {R}\), we consider the invariant Laplacians \(\Delta _{\nu }\) in the unit complex ball \({\mathcal {B}}^{n}=(SU(n,1)/S(U(n)\times U(1))\)
where \(\varphi _{\lambda ,\nu }\) is the \(S(U(n)\times U(1))\)-invariant eigenfunction of \(\Delta _{\nu }\) and \({\textbf{c}}_{\nu }(\lambda )\) the Harish-Chandra function. The goal of this paper is to give an image characterization of \({\mathcal {Q}}_{\lambda ,\nu }\) of \({\mathcal {C}}_{c}^{\infty }({\mathcal {B}}^{n})\) and \(L^{2}({\mathcal {B}}^{n},(1-|z|^2)^{-n-1}dm(z))\).
期刊介绍:
Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.