自展开式的刚性定理

IF 0.5 4区 数学 Q3 MATHEMATICS
Zhi Li, Guoxin Wei
{"title":"自展开式的刚性定理","authors":"Zhi Li, Guoxin Wei","doi":"10.1007/s00229-024-01573-z","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we completely classify 3-dimensional complete self-expanders with constant squared norm <i>S</i> of the second fundamental form and constant <span>\\(f_{3}\\)</span> in the Euclidean space <span>\\({\\mathbb {R}}^{4}\\)</span>, where <span>\\(h_{ij}\\)</span> are components of the second fundamental form, <span>\\(S=\\sum _{i,j}h^{2}_{ij}\\)</span> and <span>\\(f_{3}=\\sum _{i,j,k}h_{ij}h_{jk}h_{ki}\\)</span>.\n</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"112 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A rigidity theorem for self-expanders\",\"authors\":\"Zhi Li, Guoxin Wei\",\"doi\":\"10.1007/s00229-024-01573-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we completely classify 3-dimensional complete self-expanders with constant squared norm <i>S</i> of the second fundamental form and constant <span>\\\\(f_{3}\\\\)</span> in the Euclidean space <span>\\\\({\\\\mathbb {R}}^{4}\\\\)</span>, where <span>\\\\(h_{ij}\\\\)</span> are components of the second fundamental form, <span>\\\\(S=\\\\sum _{i,j}h^{2}_{ij}\\\\)</span> and <span>\\\\(f_{3}=\\\\sum _{i,j,k}h_{ij}h_{jk}h_{ki}\\\\)</span>.\\n</p>\",\"PeriodicalId\":49887,\"journal\":{\"name\":\"Manuscripta Mathematica\",\"volume\":\"112 1\",\"pages\":\"\"},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Manuscripta Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01573-z\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01573-z","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们对欧几里得空间 \({\mathbb {R}}^{4}\) 中第二基本形式的常数平方规范 S 和常数 \(f_{3}\)的三维完全自展开器进行了完全分类、其中 \(h_{ij}\)是第二基本形式的分量,\(S=和 _{i,j}h^{2}_{ij}\)和 \(f_{3}=和 _{i,j,k}h_{ij}h_{jk}h_{ki}\)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A rigidity theorem for self-expanders

In this paper, we completely classify 3-dimensional complete self-expanders with constant squared norm S of the second fundamental form and constant \(f_{3}\) in the Euclidean space \({\mathbb {R}}^{4}\), where \(h_{ij}\) are components of the second fundamental form, \(S=\sum _{i,j}h^{2}_{ij}\) and \(f_{3}=\sum _{i,j,k}h_{ij}h_{jk}h_{ki}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信