低维流形的 W 三维性

Pub Date : 2024-06-03 DOI:10.1007/s00229-024-01575-x
Aritra C. Bhattacharya, Bikramjit Kundu, Aniruddha C. Naolekar
{"title":"低维流形的 W 三维性","authors":"Aritra C. Bhattacharya, Bikramjit Kundu, Aniruddha C. Naolekar","doi":"10.1007/s00229-024-01575-x","DOIUrl":null,"url":null,"abstract":"<p>A space <i>X</i> is <i>W</i>-trivial if for every real vector bundle <span>\\(\\alpha \\)</span> over <i>X</i> the total Stiefel-Whitney class <span>\\(w(\\alpha )\\)</span> is 1. It follows from a result of Milnor that if <i>X</i> is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then <i>X</i> is not <i>W</i>-trivial. In this note we completely characterize <i>W</i>-trivial orientable connected closed smooth manifolds in dimensions 3, 5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be <i>W</i>-trivial.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"W-triviality of low dimensional manifolds\",\"authors\":\"Aritra C. Bhattacharya, Bikramjit Kundu, Aniruddha C. Naolekar\",\"doi\":\"10.1007/s00229-024-01575-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A space <i>X</i> is <i>W</i>-trivial if for every real vector bundle <span>\\\\(\\\\alpha \\\\)</span> over <i>X</i> the total Stiefel-Whitney class <span>\\\\(w(\\\\alpha )\\\\)</span> is 1. It follows from a result of Milnor that if <i>X</i> is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then <i>X</i> is not <i>W</i>-trivial. In this note we completely characterize <i>W</i>-trivial orientable connected closed smooth manifolds in dimensions 3, 5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be <i>W</i>-trivial.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01575-x\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01575-x","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

如果 X 上的每个实向量束 \(\alpha \)的总 Stiefel-Whitney 类 \(w(\alpha)\)都是 1,那么空间 X 就是 W-琐碎的。由 Milnor 的一个结果可知,如果 X 是维数为 1、2、4 或 8 的可定向封闭光滑流形,那么 X 就不是 W-琐碎的。在本注释中,我们完全描述了维 3、维 5 和维 6 的 W 三维可定向连通封闭光滑流形的特征。在维数 7 中,我们描述了可定向连通闭合光滑 7manifold 是 W-trivial 的必要条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
W-triviality of low dimensional manifolds

A space X is W-trivial if for every real vector bundle \(\alpha \) over X the total Stiefel-Whitney class \(w(\alpha )\) is 1. It follows from a result of Milnor that if X is an orientable closed smooth manifold of dimension 1, 2, 4 or 8, then X is not W-trivial. In this note we completely characterize W-trivial orientable connected closed smooth manifolds in dimensions 3, 5 and 6. In dimension 7, we describe necessary conditions for an orientable connected closed smooth 7-manifold to be W-trivial.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信