流多边形的三角剖分、充裕框架和温柔代数

Matias von Bell, Benjamin Braun, Kaitlin Bruegge, Derek Hanely, Zachery Peterson, Khrystyna Serhiyenko, Martha Yip
{"title":"流多边形的三角剖分、充裕框架和温柔代数","authors":"Matias von Bell, Benjamin Braun, Kaitlin Bruegge, Derek Hanely, Zachery Peterson, Khrystyna Serhiyenko, Martha Yip","doi":"10.1007/s00029-024-00942-6","DOIUrl":null,"url":null,"abstract":"<p>The cone of nonnegative flows for a directed acyclic graph (DAG) is known to admit regular unimodular triangulations induced by framings of the DAG. These triangulations restrict to triangulations of the flow polytope for strength one flows, which are called DKK triangulations. For a special class of framings called ample framings, these triangulations of the flow cone project to a complete fan. We characterize the DAGs that admit ample framings, and we enumerate the number of ample framings for a fixed DAG. We establish a connection between maximal simplices in DKK triangulations and <span>\\(\\tau \\)</span>-tilting posets for certain gentle algebras, which allows us to impose a poset structure on the dual graph of any DKK triangulation for an amply framed DAG. Using this connection, we are able to prove that for full DAGs, i.e., those DAGs with inner vertices having in-degree and out-degree equal to two, the flow polytopes are Gorenstein and have unimodal Ehrhart <span>\\(h^*\\)</span>-polynomials.\n</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Triangulations of flow polytopes, ample framings, and gentle algebras\",\"authors\":\"Matias von Bell, Benjamin Braun, Kaitlin Bruegge, Derek Hanely, Zachery Peterson, Khrystyna Serhiyenko, Martha Yip\",\"doi\":\"10.1007/s00029-024-00942-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The cone of nonnegative flows for a directed acyclic graph (DAG) is known to admit regular unimodular triangulations induced by framings of the DAG. These triangulations restrict to triangulations of the flow polytope for strength one flows, which are called DKK triangulations. For a special class of framings called ample framings, these triangulations of the flow cone project to a complete fan. We characterize the DAGs that admit ample framings, and we enumerate the number of ample framings for a fixed DAG. We establish a connection between maximal simplices in DKK triangulations and <span>\\\\(\\\\tau \\\\)</span>-tilting posets for certain gentle algebras, which allows us to impose a poset structure on the dual graph of any DKK triangulation for an amply framed DAG. Using this connection, we are able to prove that for full DAGs, i.e., those DAGs with inner vertices having in-degree and out-degree equal to two, the flow polytopes are Gorenstein and have unimodal Ehrhart <span>\\\\(h^*\\\\)</span>-polynomials.\\n</p>\",\"PeriodicalId\":501600,\"journal\":{\"name\":\"Selecta Mathematica\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Selecta Mathematica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00029-024-00942-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00942-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,有向无环图(DAG)的非负流锥体包含由 DAG 框架诱导的规则单模态三角剖分。这些三角剖分局限于流量强度为一的流量多面体的三角剖分,称为 DKK 三角剖分。对于一类特殊的框架(称为充裕框架),这些流锥的三角剖分投影到一个完整的扇形。我们描述了允许充裕框架的 DAG 的特征,并列举了固定 DAG 的充裕框架数。我们在 DKK 三角剖分中的最大简约与某些温柔代数的倾斜冒式之间建立了联系,这使得我们能够在任何 DKK 三角剖分的对偶图上为充裕框架的 DAG 强加冒式结构。利用这种联系,我们能够证明对于全 DAG,即那些内顶点的内度和外度都等于二的 DAG,流多面体是 Gorenstein 的,并且具有单模态的 Ehrhart \(h^*\)-polynomials。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Triangulations of flow polytopes, ample framings, and gentle algebras

Triangulations of flow polytopes, ample framings, and gentle algebras

The cone of nonnegative flows for a directed acyclic graph (DAG) is known to admit regular unimodular triangulations induced by framings of the DAG. These triangulations restrict to triangulations of the flow polytope for strength one flows, which are called DKK triangulations. For a special class of framings called ample framings, these triangulations of the flow cone project to a complete fan. We characterize the DAGs that admit ample framings, and we enumerate the number of ample framings for a fixed DAG. We establish a connection between maximal simplices in DKK triangulations and \(\tau \)-tilting posets for certain gentle algebras, which allows us to impose a poset structure on the dual graph of any DKK triangulation for an amply framed DAG. Using this connection, we are able to prove that for full DAGs, i.e., those DAGs with inner vertices having in-degree and out-degree equal to two, the flow polytopes are Gorenstein and have unimodal Ehrhart \(h^*\)-polynomials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信