{"title":"关于帕累托记录的概率","authors":"James Allen Fill, Ao Sun","doi":"10.1017/s0269964824000081","DOIUrl":null,"url":null,"abstract":"<p>Given a sequence of independent random vectors taking values in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb R}^d$</span></span></img></span></span> and having common continuous distribution function <span>F</span>, say that the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$n^{\\rm \\scriptsize}$</span></span></img></span></span>th observation <span>sets a (Pareto) record</span> if it is not dominated (in every coordinate) by any preceding observation. Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$p_n(F) \\equiv p_{n, d}(F)$</span></span></img></span></span> denote the probability that the <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$n^{\\rm \\scriptsize}$</span></span></img></span></span>th observation sets a record. There are many interesting questions to address concerning <span>p<span>n</span></span> and multivariate records more generally, but this short paper focuses on how <span>p<span>n</span></span> varies with <span>F</span>, particularly if, under <span>F</span>, the coordinates exhibit negative dependence or positive dependence (rather than independence, a more-studied case). We introduce new notions of negative and positive dependence ideally suited for such a study, called <span>negative record-setting probability dependence</span> (NRPD) and <span>positive record-setting probability dependence</span> (PRPD), relate these notions to existing notions of dependence, and for fixed <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$d \\geq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$n \\geq 1$</span></span></img></span></span> prove that the image of the mapping <span>p<span>n</span></span> on the domain of NRPD (respectively, PRPD) distributions is <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$[p^*_n, 1]$</span></span></img></span></span> (resp., <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$[n^{-1}, p^*_n]$</span></span></img></span></span>), where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$p^*_n$</span></span></img></span></span> is the record-setting probability for any continuous <span>F</span> governing independent coordinates.</p>","PeriodicalId":54582,"journal":{"name":"Probability in the Engineering and Informational Sciences","volume":"35 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the probability of a Pareto record\",\"authors\":\"James Allen Fill, Ao Sun\",\"doi\":\"10.1017/s0269964824000081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Given a sequence of independent random vectors taking values in <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline1.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>${\\\\mathbb R}^d$</span></span></img></span></span> and having common continuous distribution function <span>F</span>, say that the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline2.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n^{\\\\rm \\\\scriptsize}$</span></span></img></span></span>th observation <span>sets a (Pareto) record</span> if it is not dominated (in every coordinate) by any preceding observation. Let <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline3.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p_n(F) \\\\equiv p_{n, d}(F)$</span></span></img></span></span> denote the probability that the <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline4.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n^{\\\\rm \\\\scriptsize}$</span></span></img></span></span>th observation sets a record. There are many interesting questions to address concerning <span>p<span>n</span></span> and multivariate records more generally, but this short paper focuses on how <span>p<span>n</span></span> varies with <span>F</span>, particularly if, under <span>F</span>, the coordinates exhibit negative dependence or positive dependence (rather than independence, a more-studied case). We introduce new notions of negative and positive dependence ideally suited for such a study, called <span>negative record-setting probability dependence</span> (NRPD) and <span>positive record-setting probability dependence</span> (PRPD), relate these notions to existing notions of dependence, and for fixed <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline5.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$d \\\\geq 2$</span></span></img></span></span> and <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline6.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$n \\\\geq 1$</span></span></img></span></span> prove that the image of the mapping <span>p<span>n</span></span> on the domain of NRPD (respectively, PRPD) distributions is <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline7.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[p^*_n, 1]$</span></span></img></span></span> (resp., <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline8.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$[n^{-1}, p^*_n]$</span></span></img></span></span>), where <span><span><img data-mimesubtype=\\\"png\\\" data-type=\\\"\\\" src=\\\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240603131552515-0032:S0269964824000081:S0269964824000081_inline9.png\\\"><span data-mathjax-type=\\\"texmath\\\"><span>$p^*_n$</span></span></img></span></span> is the record-setting probability for any continuous <span>F</span> governing independent coordinates.</p>\",\"PeriodicalId\":54582,\"journal\":{\"name\":\"Probability in the Engineering and Informational Sciences\",\"volume\":\"35 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability in the Engineering and Informational Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1017/s0269964824000081\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, INDUSTRIAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability in the Engineering and Informational Sciences","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1017/s0269964824000081","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
Given a sequence of independent random vectors taking values in ${\mathbb R}^d$ and having common continuous distribution function F, say that the $n^{\rm \scriptsize}$th observation sets a (Pareto) record if it is not dominated (in every coordinate) by any preceding observation. Let $p_n(F) \equiv p_{n, d}(F)$ denote the probability that the $n^{\rm \scriptsize}$th observation sets a record. There are many interesting questions to address concerning pn and multivariate records more generally, but this short paper focuses on how pn varies with F, particularly if, under F, the coordinates exhibit negative dependence or positive dependence (rather than independence, a more-studied case). We introduce new notions of negative and positive dependence ideally suited for such a study, called negative record-setting probability dependence (NRPD) and positive record-setting probability dependence (PRPD), relate these notions to existing notions of dependence, and for fixed $d \geq 2$ and $n \geq 1$ prove that the image of the mapping pn on the domain of NRPD (respectively, PRPD) distributions is $[p^*_n, 1]$ (resp., $[n^{-1}, p^*_n]$), where $p^*_n$ is the record-setting probability for any continuous F governing independent coordinates.
期刊介绍:
The primary focus of the journal is on stochastic modelling in the physical and engineering sciences, with particular emphasis on queueing theory, reliability theory, inventory theory, simulation, mathematical finance and probabilistic networks and graphs. Papers on analytic properties and related disciplines are also considered, as well as more general papers on applied and computational probability, if appropriate. Readers include academics working in statistics, operations research, computer science, engineering, management science and physical sciences as well as industrial practitioners engaged in telecommunications, computer science, financial engineering, operations research and management science.