搜索音乐混合图:剪枝法

Sungho Lee, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, Yuki Mitsufuji
{"title":"搜索音乐混合图:剪枝法","authors":"Sungho Lee, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, Yuki Mitsufuji","doi":"arxiv-2406.01049","DOIUrl":null,"url":null,"abstract":"Music mixing is compositional -- experts combine multiple audio processors to\nachieve a cohesive mix from dry source tracks. We propose a method to reverse\nengineer this process from the input and output audio. First, we create a\nmixing console that applies all available processors to every chain. Then,\nafter the initial console parameter optimization, we alternate between removing\nredundant processors and fine-tuning. We achieve this through differentiable\nimplementation of both processors and pruning. Consequently, we find a sparse\nmixing graph that achieves nearly identical matching quality of the full mixing\nconsole. We apply this procedure to dry-mix pairs from various datasets and\ncollect graphs that also can be used to train neural networks for music mixing\napplications.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Searching For Music Mixing Graphs: A Pruning Approach\",\"authors\":\"Sungho Lee, Marco A. Martínez-Ramírez, Wei-Hsiang Liao, Stefan Uhlich, Giorgio Fabbro, Kyogu Lee, Yuki Mitsufuji\",\"doi\":\"arxiv-2406.01049\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Music mixing is compositional -- experts combine multiple audio processors to\\nachieve a cohesive mix from dry source tracks. We propose a method to reverse\\nengineer this process from the input and output audio. First, we create a\\nmixing console that applies all available processors to every chain. Then,\\nafter the initial console parameter optimization, we alternate between removing\\nredundant processors and fine-tuning. We achieve this through differentiable\\nimplementation of both processors and pruning. Consequently, we find a sparse\\nmixing graph that achieves nearly identical matching quality of the full mixing\\nconsole. We apply this procedure to dry-mix pairs from various datasets and\\ncollect graphs that also can be used to train neural networks for music mixing\\napplications.\",\"PeriodicalId\":501178,\"journal\":{\"name\":\"arXiv - CS - Sound\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - CS - Sound\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2406.01049\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2406.01049","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

音乐混音是一种作曲--专家们将多个音频处理器结合在一起,从枯燥的源音轨中获得具有凝聚力的混音效果。我们提出了一种从输入和输出音频反向设计这一过程的方法。首先,我们创建了一个混音控制台,将所有可用的处理器应用到每一条链上。然后,在初始控制台参数优化后,我们交替移除多余的处理器并进行微调。我们通过处理器和剪枝的可微调实现这一点。因此,我们找到了一个稀疏混音图,其匹配质量几乎与完整混音控制台相同。我们将这一过程应用于各种数据集中的干混音对,并收集了可用于训练音乐混音应用神经网络的图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Searching For Music Mixing Graphs: A Pruning Approach
Music mixing is compositional -- experts combine multiple audio processors to achieve a cohesive mix from dry source tracks. We propose a method to reverse engineer this process from the input and output audio. First, we create a mixing console that applies all available processors to every chain. Then, after the initial console parameter optimization, we alternate between removing redundant processors and fine-tuning. We achieve this through differentiable implementation of both processors and pruning. Consequently, we find a sparse mixing graph that achieves nearly identical matching quality of the full mixing console. We apply this procedure to dry-mix pairs from various datasets and collect graphs that also can be used to train neural networks for music mixing applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信