{"title":"探测Xanthoria parietina体内积累的大气微塑料:伊斯坦布尔亚洲区地衣生物监测研究","authors":"Gülşah Çobanoğlu, Ezgi Özen","doi":"10.1007/s41742-024-00596-4","DOIUrl":null,"url":null,"abstract":"<p>Airborne microplastics have become invisible global threats to all living organisms today. This study was designed for the first time to monitor atmospheric microplastic pollution in the city of Istanbul (Turkiye) through lichens, known as air pollution biomonitors. Epiphytic foliose lichen <i>Xanthoria parietina</i> was sampled from forested areas in 8 different districts on the Asian side of megacity, and searched for clues of microplastics through chemical characterization and microscopic examination. Twelve compounds (aldehyde, alkene, amine, carboxylic acid, ether, hydrocarbon, hydroxide, ketone, methyl, methylene, nitrogen dioxide, and sulfur dioxide) were identified as microplastic components in urban lichen samples taken from all localities with the FT-IR technique used in polymer identification. The most accumulated compound in lichen samples was amine, which is formed as a result of the chemical degradation of plastics. Building blocks of microplastic particles (MPs) such as aldehydes, carboxylic acid and methylene, as well as air pollutants such as SO<sub>2</sub> and NO<sub>2</sub> were also detected. Analysis data were supported by microscopic observations made by applying fluorescent staining method to lichen thalli and MPs were also detected visually. The highest number of MPs seen in the lichen thalli was detected in samples taken from touristic areas in Üsküdar district. Based on the results, in addition to human impact, intense atmospheric microplastic compounds identified by lichen monitoring on the Asian side of Istanbul suggest that these pollutants may have been transported from local plastic waste or industrial areas. This study shows that biomonitoring studies of airborne organic pollutants such as microplastics can be done through lichens.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":14121,"journal":{"name":"International Journal of Environmental Research","volume":null,"pages":null},"PeriodicalIF":2.6000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of Atmospheric Microplastics Accumulated in Xanthoria parietina: A Lichen Biomonitoring Study on the Asian Side of Istanbul\",\"authors\":\"Gülşah Çobanoğlu, Ezgi Özen\",\"doi\":\"10.1007/s41742-024-00596-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Airborne microplastics have become invisible global threats to all living organisms today. This study was designed for the first time to monitor atmospheric microplastic pollution in the city of Istanbul (Turkiye) through lichens, known as air pollution biomonitors. Epiphytic foliose lichen <i>Xanthoria parietina</i> was sampled from forested areas in 8 different districts on the Asian side of megacity, and searched for clues of microplastics through chemical characterization and microscopic examination. Twelve compounds (aldehyde, alkene, amine, carboxylic acid, ether, hydrocarbon, hydroxide, ketone, methyl, methylene, nitrogen dioxide, and sulfur dioxide) were identified as microplastic components in urban lichen samples taken from all localities with the FT-IR technique used in polymer identification. The most accumulated compound in lichen samples was amine, which is formed as a result of the chemical degradation of plastics. Building blocks of microplastic particles (MPs) such as aldehydes, carboxylic acid and methylene, as well as air pollutants such as SO<sub>2</sub> and NO<sub>2</sub> were also detected. Analysis data were supported by microscopic observations made by applying fluorescent staining method to lichen thalli and MPs were also detected visually. The highest number of MPs seen in the lichen thalli was detected in samples taken from touristic areas in Üsküdar district. Based on the results, in addition to human impact, intense atmospheric microplastic compounds identified by lichen monitoring on the Asian side of Istanbul suggest that these pollutants may have been transported from local plastic waste or industrial areas. This study shows that biomonitoring studies of airborne organic pollutants such as microplastics can be done through lichens.</p><h3 data-test=\\\"abstract-sub-heading\\\">Graphical Abstract</h3>\",\"PeriodicalId\":14121,\"journal\":{\"name\":\"International Journal of Environmental Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Environmental Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s41742-024-00596-4\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Environmental Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s41742-024-00596-4","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Detection of Atmospheric Microplastics Accumulated in Xanthoria parietina: A Lichen Biomonitoring Study on the Asian Side of Istanbul
Airborne microplastics have become invisible global threats to all living organisms today. This study was designed for the first time to monitor atmospheric microplastic pollution in the city of Istanbul (Turkiye) through lichens, known as air pollution biomonitors. Epiphytic foliose lichen Xanthoria parietina was sampled from forested areas in 8 different districts on the Asian side of megacity, and searched for clues of microplastics through chemical characterization and microscopic examination. Twelve compounds (aldehyde, alkene, amine, carboxylic acid, ether, hydrocarbon, hydroxide, ketone, methyl, methylene, nitrogen dioxide, and sulfur dioxide) were identified as microplastic components in urban lichen samples taken from all localities with the FT-IR technique used in polymer identification. The most accumulated compound in lichen samples was amine, which is formed as a result of the chemical degradation of plastics. Building blocks of microplastic particles (MPs) such as aldehydes, carboxylic acid and methylene, as well as air pollutants such as SO2 and NO2 were also detected. Analysis data were supported by microscopic observations made by applying fluorescent staining method to lichen thalli and MPs were also detected visually. The highest number of MPs seen in the lichen thalli was detected in samples taken from touristic areas in Üsküdar district. Based on the results, in addition to human impact, intense atmospheric microplastic compounds identified by lichen monitoring on the Asian side of Istanbul suggest that these pollutants may have been transported from local plastic waste or industrial areas. This study shows that biomonitoring studies of airborne organic pollutants such as microplastics can be done through lichens.
期刊介绍:
International Journal of Environmental Research is a multidisciplinary journal concerned with all aspects of environment. In pursuit of these, environmentalist disciplines are invited to contribute their knowledge and experience. International Journal of Environmental Research publishes original research papers, research notes and reviews across the broad field of environment. These include but are not limited to environmental science, environmental engineering, environmental management and planning and environmental design, urban and regional landscape design and natural disaster management. Thus high quality research papers or reviews dealing with any aspect of environment are welcomed. Papers may be theoretical, interpretative or experimental.