{"title":"利用 DFT 和机器学习预测岩盐复合氧化物上的氢吸附能","authors":"Adrian Domínguez-Castro","doi":"10.1007/s00214-024-03124-x","DOIUrl":null,"url":null,"abstract":"<p>The prediction of hydrogen adsorption energies on complex oxides by integrating DFT calculations and machine learning is considered. In particular, 14 descriptors for electronic and geometric properties evaluation are adapted within a 336 hydrogen adsorption energy dataset created. Supervised learning techniques were explored to establish an accurate predictive model. With the deep neural network results, a MAE of about 0.06 eV is achieved. This research highlights the synergistic potential of DFT and machine learning for accelerating the exploration of materials for catalysis.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DFT and machine learning for predicting hydrogen adsorption energies on rocksalt complex oxides\",\"authors\":\"Adrian Domínguez-Castro\",\"doi\":\"10.1007/s00214-024-03124-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The prediction of hydrogen adsorption energies on complex oxides by integrating DFT calculations and machine learning is considered. In particular, 14 descriptors for electronic and geometric properties evaluation are adapted within a 336 hydrogen adsorption energy dataset created. Supervised learning techniques were explored to establish an accurate predictive model. With the deep neural network results, a MAE of about 0.06 eV is achieved. This research highlights the synergistic potential of DFT and machine learning for accelerating the exploration of materials for catalysis.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1007/s00214-024-03124-x\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s00214-024-03124-x","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
DFT and machine learning for predicting hydrogen adsorption energies on rocksalt complex oxides
The prediction of hydrogen adsorption energies on complex oxides by integrating DFT calculations and machine learning is considered. In particular, 14 descriptors for electronic and geometric properties evaluation are adapted within a 336 hydrogen adsorption energy dataset created. Supervised learning techniques were explored to establish an accurate predictive model. With the deep neural network results, a MAE of about 0.06 eV is achieved. This research highlights the synergistic potential of DFT and machine learning for accelerating the exploration of materials for catalysis.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.