Naseem Abbas, Muhammad Shakeel, Ahmed Fouly, Hossein Ahmadian
{"title":"光纤中三组份耦合 NLS 型方程的数值模拟和分析方法","authors":"Naseem Abbas, Muhammad Shakeel, Ahmed Fouly, Hossein Ahmadian","doi":"10.1142/s0217984924503901","DOIUrl":null,"url":null,"abstract":"<p>This work aims to look into the dynamic research of coupled NLS-type equations with three components. The optical solitons, including the periodic function, trigonometric function, exponential function, solitary wave, and elliptic function solutions are built using the Jacobi elliptic function (JEF) method. The investigations will aid in improving comprehension of the soliton dynamics system’s overall illustration. Using Mathematica software, we visually represent some solutions found in 3D, contour, and 2D graphs for tangible demonstration and visual presentation. These results are helpful in optical fiber, signal processing and data transmission.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"106 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations and analytical approach for three-component coupled NLS-type equations in fiber optics\",\"authors\":\"Naseem Abbas, Muhammad Shakeel, Ahmed Fouly, Hossein Ahmadian\",\"doi\":\"10.1142/s0217984924503901\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work aims to look into the dynamic research of coupled NLS-type equations with three components. The optical solitons, including the periodic function, trigonometric function, exponential function, solitary wave, and elliptic function solutions are built using the Jacobi elliptic function (JEF) method. The investigations will aid in improving comprehension of the soliton dynamics system’s overall illustration. Using Mathematica software, we visually represent some solutions found in 3D, contour, and 2D graphs for tangible demonstration and visual presentation. These results are helpful in optical fiber, signal processing and data transmission.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924503901\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503901","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
Numerical simulations and analytical approach for three-component coupled NLS-type equations in fiber optics
This work aims to look into the dynamic research of coupled NLS-type equations with three components. The optical solitons, including the periodic function, trigonometric function, exponential function, solitary wave, and elliptic function solutions are built using the Jacobi elliptic function (JEF) method. The investigations will aid in improving comprehension of the soliton dynamics system’s overall illustration. Using Mathematica software, we visually represent some solutions found in 3D, contour, and 2D graphs for tangible demonstration and visual presentation. These results are helpful in optical fiber, signal processing and data transmission.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.