里加板下 Sutterby 纳米流体流动的热特性分析:Tiwari 和 Das 模型

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Syed Asif Ali Shah, Sidra Qayyum, Sohail Nadeem, Hanadi Alzubadi, N. Ameer Ahammad, Aziz Ullah Awan, Roobaea Alroobaea
{"title":"里加板下 Sutterby 纳米流体流动的热特性分析:Tiwari 和 Das 模型","authors":"Syed Asif Ali Shah, Sidra Qayyum, Sohail Nadeem, Hanadi Alzubadi, N. Ameer Ahammad, Aziz Ullah Awan, Roobaea Alroobaea","doi":"10.1142/s0217984924504219","DOIUrl":null,"url":null,"abstract":"<p>This investigation uses the Tiwari and Das nanofluid model to enhance the heat transfer rate in Sutterby nanofluid over a Riga plate. The effects of heat source/sink, viscosity dispersion, and mass flow for water-based fluids are also considered in this work. Sutterby fluid has been utilized to investigate the rheological features of nanofluids. The transverse Lorentz force produced by the Riga plate assists in the flow down the plate by producing an electromagnetic field. The main aim of this investigation is to evaluate the presence of two different types of nanoparticles in water, specifically silicon carbide <span><math altimg=\"eq-00001.gif\" display=\"inline\"><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">SiC</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span> and copper <span><math altimg=\"eq-00002.gif\" display=\"inline\"><mo stretchy=\"false\">(</mo><mstyle><mtext mathvariant=\"normal\">Cu</mtext></mstyle><mo stretchy=\"false\">)</mo></math></span><span></span>. Dimensionless variables are first used to convert the mathematical model into a non-dimensional form. The similarity approach is then used to further rewrite the non-dimensional partial differential equations into a set of similarity equations. The bvp4c function in MATLAB software provides a numerical solution to these equations. The effects on temperature and velocity profiles of many physical factors, including the Reynold number, heat source/sink, and Deborah number, have been analyzed and presented. Furthermore, using tables, a detailed analysis of the skin friction coefficient and local Nusselt numbers is conducted. The results show that convective flow is suppressed when solid nanoparticles are added to the base fluid. The velocity distribution improves as Deborah and Reynold’s numbers get a higher value. Also, the temperature field improves by incrementing exponential and thermal heat source/sink parameters.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"20 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal characterization of Sutterby nanofluid flow under Riga plate: Tiwari and Das model\",\"authors\":\"Syed Asif Ali Shah, Sidra Qayyum, Sohail Nadeem, Hanadi Alzubadi, N. Ameer Ahammad, Aziz Ullah Awan, Roobaea Alroobaea\",\"doi\":\"10.1142/s0217984924504219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This investigation uses the Tiwari and Das nanofluid model to enhance the heat transfer rate in Sutterby nanofluid over a Riga plate. The effects of heat source/sink, viscosity dispersion, and mass flow for water-based fluids are also considered in this work. Sutterby fluid has been utilized to investigate the rheological features of nanofluids. The transverse Lorentz force produced by the Riga plate assists in the flow down the plate by producing an electromagnetic field. The main aim of this investigation is to evaluate the presence of two different types of nanoparticles in water, specifically silicon carbide <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\"><mo stretchy=\\\"false\\\">(</mo><mstyle><mtext mathvariant=\\\"normal\\\">SiC</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> and copper <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\"><mo stretchy=\\\"false\\\">(</mo><mstyle><mtext mathvariant=\\\"normal\\\">Cu</mtext></mstyle><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. Dimensionless variables are first used to convert the mathematical model into a non-dimensional form. The similarity approach is then used to further rewrite the non-dimensional partial differential equations into a set of similarity equations. The bvp4c function in MATLAB software provides a numerical solution to these equations. The effects on temperature and velocity profiles of many physical factors, including the Reynold number, heat source/sink, and Deborah number, have been analyzed and presented. Furthermore, using tables, a detailed analysis of the skin friction coefficient and local Nusselt numbers is conducted. The results show that convective flow is suppressed when solid nanoparticles are added to the base fluid. The velocity distribution improves as Deborah and Reynold’s numbers get a higher value. Also, the temperature field improves by incrementing exponential and thermal heat source/sink parameters.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924504219\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924504219","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究使用 Tiwari 和 Das 纳米流体模型来提高里加板上 Sutterby 纳米流体的传热率。本研究还考虑了水基流体的热源/沉降、粘度分散和质量流的影响。萨特比流体被用来研究纳米流体的流变特性。里加板产生的横向洛伦兹力通过产生电磁场帮助流体顺着里加板向下流动。这项研究的主要目的是评估水中是否存在两种不同类型的纳米颗粒,特别是碳化硅(SiC)和铜(Cu)。首先使用无量纲变量将数学模型转换为非量纲形式。然后使用相似性方法将非一维偏微分方程进一步改写为一组相似性方程。MATLAB 软件中的 bvp4c 函数提供了这些方程的数值解。分析并介绍了雷诺数、热源/散热器和德博拉数等许多物理因素对温度和速度曲线的影响。此外,还使用表格对表皮摩擦系数和局部努塞尔特数进行了详细分析。结果表明,在基础流体中加入固体纳米颗粒后,对流受到抑制。速度分布随着 Deborah 和雷诺数数值的增大而改善。此外,温度场也随着指数参数和热源/散热器参数的增加而改善。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermal characterization of Sutterby nanofluid flow under Riga plate: Tiwari and Das model

This investigation uses the Tiwari and Das nanofluid model to enhance the heat transfer rate in Sutterby nanofluid over a Riga plate. The effects of heat source/sink, viscosity dispersion, and mass flow for water-based fluids are also considered in this work. Sutterby fluid has been utilized to investigate the rheological features of nanofluids. The transverse Lorentz force produced by the Riga plate assists in the flow down the plate by producing an electromagnetic field. The main aim of this investigation is to evaluate the presence of two different types of nanoparticles in water, specifically silicon carbide (SiC) and copper (Cu). Dimensionless variables are first used to convert the mathematical model into a non-dimensional form. The similarity approach is then used to further rewrite the non-dimensional partial differential equations into a set of similarity equations. The bvp4c function in MATLAB software provides a numerical solution to these equations. The effects on temperature and velocity profiles of many physical factors, including the Reynold number, heat source/sink, and Deborah number, have been analyzed and presented. Furthermore, using tables, a detailed analysis of the skin friction coefficient and local Nusselt numbers is conducted. The results show that convective flow is suppressed when solid nanoparticles are added to the base fluid. The velocity distribution improves as Deborah and Reynold’s numbers get a higher value. Also, the temperature field improves by incrementing exponential and thermal heat source/sink parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信