锥面与圆盘间三元卡松纳米流体流动传热增强的灵敏分析

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
R. Manaswini, B. N. Hanumagowda, T. N. Tanuja, L. Kavitha, Amal Abdulrahman, R. J. Punith Gowda, S. V. K. Varma
{"title":"锥面与圆盘间三元卡松纳米流体流动传热增强的灵敏分析","authors":"R. Manaswini, B. N. Hanumagowda, T. N. Tanuja, L. Kavitha, Amal Abdulrahman, R. J. Punith Gowda, S. V. K. Varma","doi":"10.1142/s0217984924504207","DOIUrl":null,"url":null,"abstract":"<p>This study explores the ternary nanofluid flow within the canonical gap between a cone and a disk with particle deposition and magnetic field effects. Reduced titanium dioxide, magnetite, and graphene oxide are used as nanoparticles in the base fluid ethylene glycol. The governing equations of the problem are in the form of partial differential equations, which are converted to nonlinear ordinary differential equations by using appropriate similarity transformations, and they are solved numerically by using Runge–Kutta–Fehlberg fourth fifth-order (RKF 45) technique. The main agenda of this work is to discuss the impacts of parameters on three cases. The effects of essential aspects on fluid flow, heat and mass transfer rates were studied and analyzed using a graphical representation. Additionally, the response surface methodology and sensitivity analysis are carried out to enhance the importance of the heat transfer rate. The results reveal that the flow field increases significantly with increased Reynolds numbers for both cone and disk rotations. It is observed that the sensitivity analysis of the Nusselt number toward the Eckert number is more for all the radiation parameter values and the Eckert number’s middle level.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"106 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitive analysis of heat transfer enhancement in ternary Casson nanofluid flow between a conical surface and disk\",\"authors\":\"R. Manaswini, B. N. Hanumagowda, T. N. Tanuja, L. Kavitha, Amal Abdulrahman, R. J. Punith Gowda, S. V. K. Varma\",\"doi\":\"10.1142/s0217984924504207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study explores the ternary nanofluid flow within the canonical gap between a cone and a disk with particle deposition and magnetic field effects. Reduced titanium dioxide, magnetite, and graphene oxide are used as nanoparticles in the base fluid ethylene glycol. The governing equations of the problem are in the form of partial differential equations, which are converted to nonlinear ordinary differential equations by using appropriate similarity transformations, and they are solved numerically by using Runge–Kutta–Fehlberg fourth fifth-order (RKF 45) technique. The main agenda of this work is to discuss the impacts of parameters on three cases. The effects of essential aspects on fluid flow, heat and mass transfer rates were studied and analyzed using a graphical representation. Additionally, the response surface methodology and sensitivity analysis are carried out to enhance the importance of the heat transfer rate. The results reveal that the flow field increases significantly with increased Reynolds numbers for both cone and disk rotations. It is observed that the sensitivity analysis of the Nusselt number toward the Eckert number is more for all the radiation parameter values and the Eckert number’s middle level.</p>\",\"PeriodicalId\":18570,\"journal\":{\"name\":\"Modern Physics Letters B\",\"volume\":\"106 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Modern Physics Letters B\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1142/s0217984924504207\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"PHYSICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924504207","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了三元纳米流体在锥体和圆盘之间的典型间隙内流动时的颗粒沉积和磁场效应。在基础流体乙二醇中使用了还原二氧化钛、磁铁矿和氧化石墨烯作为纳米粒子。该问题的控制方程为偏微分方程形式,通过适当的相似变换将其转换为非线性常微分方程,并使用 Runge-Kutta-Fehlberg 四阶五次(RKF 45)技术对其进行数值求解。这项工作的主要议程是讨论参数对三种情况的影响。使用图形表示法研究和分析了重要方面对流体流动、传热和传质速率的影响。此外,还采用了响应面方法和敏感性分析,以提高传热速率的重要性。结果表明,随着雷诺数的增加,锥体和圆盘旋转的流场都会显著增加。据观察,在所有辐射参数值和埃克特数的中间水平上,努塞尔特数对埃克特数的敏感性分析更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sensitive analysis of heat transfer enhancement in ternary Casson nanofluid flow between a conical surface and disk

This study explores the ternary nanofluid flow within the canonical gap between a cone and a disk with particle deposition and magnetic field effects. Reduced titanium dioxide, magnetite, and graphene oxide are used as nanoparticles in the base fluid ethylene glycol. The governing equations of the problem are in the form of partial differential equations, which are converted to nonlinear ordinary differential equations by using appropriate similarity transformations, and they are solved numerically by using Runge–Kutta–Fehlberg fourth fifth-order (RKF 45) technique. The main agenda of this work is to discuss the impacts of parameters on three cases. The effects of essential aspects on fluid flow, heat and mass transfer rates were studied and analyzed using a graphical representation. Additionally, the response surface methodology and sensitivity analysis are carried out to enhance the importance of the heat transfer rate. The results reveal that the flow field increases significantly with increased Reynolds numbers for both cone and disk rotations. It is observed that the sensitivity analysis of the Nusselt number toward the Eckert number is more for all the radiation parameter values and the Eckert number’s middle level.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信