Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing
{"title":"半线性抛物线 PDE 的验证整合","authors":"Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing","doi":"10.1007/s00211-024-01415-w","DOIUrl":null,"url":null,"abstract":"<p>Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variation of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton–Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation, the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.</p>","PeriodicalId":49733,"journal":{"name":"Numerische Mathematik","volume":"59 1","pages":""},"PeriodicalIF":2.1000,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Validated integration of semilinear parabolic PDEs\",\"authors\":\"Jan Bouwe van den Berg, Maxime Breden, Ray Sheombarsing\",\"doi\":\"10.1007/s00211-024-01415-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variation of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton–Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation, the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.</p>\",\"PeriodicalId\":49733,\"journal\":{\"name\":\"Numerische Mathematik\",\"volume\":\"59 1\",\"pages\":\"\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2024-06-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Numerische Mathematik\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00211-024-01415-w\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerische Mathematik","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00211-024-01415-w","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Validated integration of semilinear parabolic PDEs
Integrating evolutionary partial differential equations (PDEs) is an essential ingredient for studying the dynamics of the solutions. Indeed, simulations are at the core of scientific computing, but their mathematical reliability is often difficult to quantify, especially when one is interested in the output of a given simulation, rather than in the asymptotic regime where the discretization parameter tends to zero. In this paper we present a computer-assisted proof methodology to perform rigorous time integration for scalar semilinear parabolic PDEs with periodic boundary conditions. We formulate an equivalent zero-finding problem based on a variation of constants formula in Fourier space. Using Chebyshev interpolation and domain decomposition, we then finish the proof with a Newton–Kantorovich type argument. The final output of this procedure is a proof of existence of an orbit, together with guaranteed error bounds between this orbit and a numerically computed approximation. We illustrate the versatility of the approach with results for the Fisher equation, the Swift–Hohenberg equation, the Ohta–Kawasaki equation and the Kuramoto–Sivashinsky equation. We expect that this rigorous integrator can form the basis for studying boundary value problems for connecting orbits in partial differential equations.
期刊介绍:
Numerische Mathematik publishes papers of the very highest quality presenting significantly new and important developments in all areas of Numerical Analysis. "Numerical Analysis" is here understood in its most general sense, as that part of Mathematics that covers:
1. The conception and mathematical analysis of efficient numerical schemes actually used on computers (the "core" of Numerical Analysis)
2. Optimization and Control Theory
3. Mathematical Modeling
4. The mathematical aspects of Scientific Computing