{"title":"椭圆曲线反周岩泽不变式统计","authors":"Jeffrey Hatley, Debanjana Kundu, Anwesh Ray","doi":"10.1007/s00209-024-03517-5","DOIUrl":null,"url":null,"abstract":"<p>We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic <span>\\(\\mathbb {Z}_p\\)</span>-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistics for anticyclotomic Iwasawa invariants of elliptic curves\",\"authors\":\"Jeffrey Hatley, Debanjana Kundu, Anwesh Ray\",\"doi\":\"10.1007/s00209-024-03517-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic <span>\\\\(\\\\mathbb {Z}_p\\\\)</span>-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03517-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03517-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Statistics for anticyclotomic Iwasawa invariants of elliptic curves
We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic \(\mathbb {Z}_p\)-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.