椭圆曲线反周岩泽不变式统计

IF 1 3区 数学 Q1 MATHEMATICS
Jeffrey Hatley, Debanjana Kundu, Anwesh Ray
{"title":"椭圆曲线反周岩泽不变式统计","authors":"Jeffrey Hatley, Debanjana Kundu, Anwesh Ray","doi":"10.1007/s00209-024-03517-5","DOIUrl":null,"url":null,"abstract":"<p>We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic <span>\\(\\mathbb {Z}_p\\)</span>-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"16 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Statistics for anticyclotomic Iwasawa invariants of elliptic curves\",\"authors\":\"Jeffrey Hatley, Debanjana Kundu, Anwesh Ray\",\"doi\":\"10.1007/s00209-024-03517-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic <span>\\\\(\\\\mathbb {Z}_p\\\\)</span>-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.</p>\",\"PeriodicalId\":18278,\"journal\":{\"name\":\"Mathematische Zeitschrift\",\"volume\":\"16 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-06-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematische Zeitschrift\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00209-024-03517-5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03517-5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了椭圆曲线的塞尔玛群的岩泽不变式的平均行为,考虑的是anticyclotomic \(\mathbb {Z}_p\)-extensions在确定和不确定环境下的情况。本文的结果是算术统计和岩泽理论的交叉点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Statistics for anticyclotomic Iwasawa invariants of elliptic curves

We study the average behaviour of the Iwasawa invariants for Selmer groups of elliptic curves, considered over anticyclotomic \(\mathbb {Z}_p\)-extensions in both the definite and indefinite settings. The results in this paper lie at the intersection of arithmetic statistics and Iwasawa theory.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信